Angewandte
Chemie
[9] a) J. Rodrꢂguez, R. M. Nieto,
P. Crews, J. Nat. Prod. 1993,
56, 2034; b) A. Rudi, Y.
Kashman, Y. Benayahu, M.
Schleyer, J. Nat. Prod. 1994,
57, 829; c) A. Groweiss, J. J.
Newcomer, B. R. OꢃKeefe,
A. Blackman, M. R. Boyd,
J. Nat. Prod. 1999, 62, 1691;
d) R. Fernµndez, M. Dherbo-
mez, Y. Letourneux, M.
Nabil, J. F. Verbist, J. F.
Biard, J. Nat. Prod. 1999, 62,
678.
Scheme 6. Completion of the synthesis of bengazole A (1): a) Raney nickel, H2, B(OH)3, EtOH, H2O, 61%;
b) 1. Et2BOMe, NaBH4, THF, À788C, (d.r. 14:1); 2. 2,2-dimethoxypropane, TsOH, 89% over 2 steps;
c) 1. TBAF, THF, 08C, quant.; 2. myristoyl chloride, NEt3, CH2Cl2, 08C, 85%; d) TFA, H2O, RT, 95%.
Ts =toluene-4-sulfonic acid, TBAF=tetrabutylammonium fluoride.
[10] P. A. Searle, R. K. Richter,
T. F. Molinski, J. Org. Chem.
1996, 61, 4073.
[11] T. F. Molinski, J. Nat. Prod.
1993, 56, 1.
[12] J. Antonio, T. F. Molinski, J.
Nat. Prod. 1993, 56, 54.
[13] a) R. J. Mulder, C. M. Shafer, T. F. Molinski, J. Org. Chem. 1999,
64, 4995; b) C. M. Shafer, T. F. Molinski, Tetrahedron Lett. 1998,
39, 2903.
[14] C. M. Shafer, T. F. Molinski, Heterocycles 2000, 53, 1167.
[15] a) J. C. Hodges, W. C. Patt, C. J. Connolly, J. Org. Chem. 1991,
56, 449; b) E. Vedejs, S. D. Monahan, J. Org. Chem. 1996, 61,
5192.
using TFA/water removed both the acetonide and the BDA
groups from 20 in 95% yield to complete the total synthesis of
bengazole A (1) in an overall yield of 3.4%. The data for our
synthetic material were consistent with those reported for the
natural product, and 1HNMR spectroscopic analysis con-
firmed our product to be a single C10 epimer.[8,13,34–36]
In conclusion, we have completed a stereocontrolled total
synthesis of bengazole A by using an oxazole synthesis under
mild conditions and a diastereoselective 1,3-dipolar cyclo-
addition. Our route is the first to provide a single stereoiso-
mer of the product and relies upon BDA building blocks to
establish the stereogenic centers. Ongoing work in our
laboratories is directed toward the synthesis of other mem-
bers of the bengazole family and toward the synthesis of
analogues for studies on structure–activity relationships.
[16] P. Chittari, Y. Hamada, T. Shioiri, Heterocycles 2003, 59, 465.
[17] P. Chittari, Y. Hamada, T. Shioiri, Synlett 1998, 1022.
[18] a) J. S. Barlow, D. J. Dixon, A. C. Foster, S. V. Ley, D. J.
Reynolds, J. Chem. Soc. Perkin Trans. 1 1999, 1627; b) D. J.
Dixon, A. C. Foster, S. V. Ley, D. J. Reynolds, J. Chem. Soc.
Perkin Trans. 1 1999, 1631; c) S. V. Ley, D. K. Baeschlin, D. J.
Dixon, A. C. Foster, S. J. Ince, H. W. M. Priepke, D. J. Reynolds,
Chem. Rev. 2001, 101, 53; d) P. Michel, S. V. Ley, Angew. Chem.
2002, 114, 4054; Angew. Chem. Int. Ed. 2002, 41, 3898; .
[19] a) U. Schöllkopf, R. Schröder, Angew. Chem. 1971, 83, 358;
Angew. Chem. Int. Ed. Engl. 1971, 10, 333; b) A. M. van Leusen,
B. E. Hoogenboom, H. Siderius, Tetrahedron Lett. 1972, 2369.
[20] The yield of the amide coupling to form amide 3 is highly
dependent on the quality of carboxylic acid 9, which is unstable
and decomposes on storage. A more practical route on a large
scale generates acid 9 through hydrolysis of the equivalent non-
enantiopure methyl ester. The coupling with the enantiopure
serine methyl ester resolves the acid into diastereomers, which
are easily separated by column chromatography to provide
amide 3 as a single stereoisomer.
[21] For oxazole-forming reactions using (diethylamino)sulfur tri-
fluoride (DAST), see: a) W. J. Middleton, J. Org. Chem. 1975, 40,
574; b) P. Lafargue, P. Guenot, J.-P. Lellouche, Heterocycles
1995, 41, 947; c) A. J. Phillips, Y. Uto, P. Wipf, M. J. Reno, D. R.
Williams, Org. Lett. 2000, 2, 1165; for reactions in which the
Burgess reagent is used, see: d) G. M. Atkins, Jr., E. M. Burgess,
J. Am. Chem. Soc. 1968, 90, 4744; e) P. Wipf, C. P. Miller,
Tetrahedron Lett. 1992, 33, 907; for selected other methods, see:
f) A. Sakakura, R. Kondo, K. Ishihara, Org. Lett. 2005, 7, 1971;
g) P. Wipf, C. P. Miller, Tetrahedron Lett. 1992, 33, 6267.
[22] D. R. Williams, P. D. Lowder, Y.-G. Gu, D. A. Brooks, Tetrahe-
dron Lett. 1997, 38, 331.
Received: May 23, 2006
Revised: July 31, 2006
Published online: September 20, 2006
Keywords: antifungal agents · cycloaddition · heterocycles ·
.
natural products · total synthesis
[1] a) J. R. Lewis, Nat. Prod. Rep. 2002, 19, 223; b) Z. Jin, Z. Li, R.
Huang, Nat. Prod. Rep. 2002, 19, 454, and references therein.
[2] a) V. S. C. Yeh, Tetrahedron 2004, 60, 11995; b) Y. Hamada, T.
Shioiri, Chem. Rev. 2005, 105, 4441; c) P. Wipf, Chem. Rev. 1995,
95, 2115; d) P. Wipf, S. Venkatraman, Synlett 1997, 1; e) L. O.
Haustedt, I. V. Hartung, H. M. R. Hoffmann, Angew. Chem.
2003, 115, 2815; Angew. Chem. Int. Ed. 2003, 42, 2711; ; f) E.
Riego, D. Hernµndez, F. Albericio, M. lvarez, Synthesis 2005,
1907, and references therein.
[3] P. A. Searle, T. F. Molinski, J. Am. Chem. Soc. 1995, 117, 8126.
[4] R. Jansen, H. Irschik, H. Reichenbach, V. Wray, G. Höfle,
Liebigs Ann. Chem. 1994, 759.
[5] T. Ichiba, W. Y. Yoshida, P. J. Scheuer, T. Higa, D. G. Gravalos, J.
Am. Chem. Soc. 1991, 113, 3173.
[23] N. Endoh, K. Tsuboi, R. Kim, Y. Yonezawa, C.-G. Shin,
Heterocycles 2003, 60, 1567.
[6] N. Lindquist, W. Fenical, G. D. Van Duyne, J. Clardy, J. Am.
Chem. Soc. 1991, 113, 2303.
[24] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277.
[25] J. S. Panek, R. T. Beresis, J. Org. Chem. 1996, 61, 6496.
[26] a) P. Wipf, C. P. Miller, J. Org. Chem. 1993, 58, 3604; b) P. Wipf, S.
Lim, J. Am. Chem. Soc. 1995, 117, 558.
[7] A. Nagatsu, H. Kajitani, J. Sakakibara, Tetrahedron Lett. 1995,
36, 4097.
[8] M. Adamczeski, E. Quiꢀoꢁ, P. Crews, J. Am. Chem. Soc. 1988,
110, 1598.
Angew. Chem. Int. Ed. 2006, 45, 6714 –6718ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6717