10.1002/anie.202010839
Angewandte Chemie International Edition
that the H/D exchange process occurs during the reaction, and perfluoroalkylated organic compounds by visible-light
the alcohol solvent acts as a donor of the hydrogen atom for the photoredox catalysis. This strategy uses a series of vinyl-
products. Furthermore, “light/dark” experiments further substituted all-carbon quaternary centers to access cascade
confirmed that visible light was a necessary component of the
reaction. In addition, quantum yield measurements of the
radical addition, rearrangement, and reduction processes,
enabling one C-C bond cleavage along with one C-H and two
reaction between olefin 1a with I-nC4F9 (2a) yielded a value of C-C bond formations simultaneously. Further studies
Φ = 1.8 (see Supporting Information).[23] This result indicates
expanding upon the scope of this rearrangement as well as
that productive short-lived radical chain propagation processes further mechanistic investigations are currently underway.
perform alongside the main photoredox cycle.[24]
Based upon the above results and the previous reports, a
Acknowledgments
possible mechanism has been suggested in Figure 2.
Photoexcitation of the IrIII complex with visible light affords a
We wish to thank the National Natural Science Foundation of China
redox-active excited state *IrIII that undergoes single electron
(grant 21672097, 21972064 and 21901111), the National Natural
transfer (SET) with alkyl halides
and an alkyl radical
. The formed IrIV complex undergoes SET
with tertiary amines to recover the IrIII species and generate an
amine radical cation A [25]
Then, species can engage in
hydrogen atom transfer with the TFE solvent, delivering an
aminium species and carbon-centered radical . Further β-H
2
to produce an IrIV species
Science Foundation of Jiangsu Province (Grant BK20170632), the
Excellent Youth Foundation of Jiangsu Scientific Committee (Grant
BK20180007), and the “Innovation & Entrepreneurship Talents
Plan” of Jiangsu Province for their financial support.
I
.
A
B
C
Rearrangement ·fluorine·photochemistry ·radicals ·olefins
elimination delivers CF3CHO and a hydrogen atom radical. We
observed the formation of trifluoroethoxy hemiacetal 17 by
NMR from the reaction mixture, which was assumed to be
formed from CF3CHO and TFE.[26] Similarly, the use of d1-
MeOH as the solvent generates the deuterium product D-3aa
and HCHO, which can further react with d1-MeOH resulting in
compound 20 according to the experimental results. In addition,
[1] a) A. A. Tabolin, S. L. Ioffe, Chem. Rev. 2014, 114, 5426; b) Y. Zhu,
L. Sun, P. Lu, Y. Wang, ACS Catal. 2014, 4, 1911; c) T. H. West; S. S.
M. Spoehrle, K. Kasten, J. E. Taylor, A. D. Smith, ACS Catal. 2015, 5,
7446; d) X.-M. Zhang, Y.-Q. Tu, F.-M. Zhang, Z.-H. Chen, S.-H.
Wang, Chem. Soc. Rev. 2017, 46, 2272.
[2]
a) A. Studer, M. Bossart, Tetrahedron 2001, 57, 9649; b) G. Zhang,
Y. Liu, J. Zhao, Y. Li, Q. Zhang, Sci. China Chem. 2019, 62, 1476; c)
W. Li, W. Xu, J. Xie, S. Yu, C. Zhu, Chem. Soc. Rev. 2018, 47, 654; d)
X. Wu, C. Zhu, Chin. J. Chem. 2019, 37, 171.
the formed radical
I
undergoes addition to olefin
1, providing
an alkyl radical II
.
Sequential 1,2-aryl migration via
[3] Z.-M. Chen, X.-M. Zhang, Y.-Q. Tu, Chem. Soc. Rev. 2015, 44, 5220.
[4] W. H. Urry, M. S. Kharasch, J. Am. Chem. Soc. 1944, 66, 1438.
[5] a) T. J. Snape, Chem. Soc. Rev. 2007, 36, 1823; b) B. Wang, Y.-Q. Tu,
Acc. Chem. Res. 2011, 44, 1207; c) Z.-L. Song, C.-A. Fan, Y.-Q. Tu,
Chem. Rev. 2011, 111, 7523.
spiro[2.5]octadienyl radical transition state III results in the
formation of a radical IV. Finally, the resulting radical IV
abstracts the formed hydrogen to yield the desired product
Out of the catalytic cycle, the alkyl radical II can participate in
a propagation chain process with alkyl halides to form ATRA
product
3.
2
[6] For a recent review, see: a) W.-Z. Weng, B. Zhang, Chem. Eur. J.
2018, 24, 10934; For some recent examples, see: b) X. Liu, F. Xiong,
X. Huang, L. Xu, P. Li, X. Wu, Angew. Chem. Int. Ed. 2013, 125,
6296; c) H. Egami, R. Shimizu, Y. Usui, M. Sodeoka, Chem. Commun.
2013, 49, 7346; d) A. Bunescu, Q. Wang, J. Zhu, Angew. Chem. Int.
Ed. 2015, 54, 3132–3135; Angew. Chem. 2015, 127, 3175; e) B.
Sahoo, J.-L. Li, F. Glorius, Angew. Chem. Int. Ed. 2015, 54, 11577;
Angew. Chem. 2015, 127, 11577; f) Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.;
Zhu, C. Chem. Commun. 2015, 51, 7222; g) Huang, H.-L.; Yan, H.;
Yang, C.; Xia, W. Chem. Commun. 2015, 51, 4910; h) Cai, S.; Tian,
Y.; Zhang, J.; Liu, Z.; Lu, M.; Weng, W.; Huang, M. Adv. Synth.
Catal. 2018, 360, 4084; i) Lu, Ma.; Qin, H.; Lin, Z.; Huang, M.; Weng,
W.; Cai, S. Org. Lett. 2018, 20, 7611; j) Z. Guan, H. Wang, Y. Huang,
Y. Wang, S. Wang, A. Lei, Org. Lett. 2019, 21, 4619.
4
.
[7] For recent reviews, see: a) M. Kischkewitz, F. W. Friese, A. Studer,
Adv. Synth. Catal. 2020, 362, 2077; b) G. J. Lovinger, J. P. Morken,
Eur. J. Org. Chem. 2020, 2362.
[8] a) M. Kischkewitz, K. Okamoto, C. Mꢀck-Lichtenfeld, A. Studer,
Science 2017, 355, 936; b) C. Gerleve, M. Kischkewitz, A. Studer,
Angew. Chem. Int. Ed. 2018, 57, 2441; Angew. Chem. 2018, 130,
2466.
[9] M. Silvi, C. Sandford, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139,
5736.
[10] G. J. Lovinger, J. P. Morken, J. Am. Chem. Soc. 2017, 139, 17293.
[11] B. Zhao, Z. Li, Y. Wu, Y. Wang, J. Qian, Y. Yuan, Z. Shi, Angew.
Chem. Int. Ed. 2019, 58, 9448; Angew. Chem. 2019, 131, 9548.
[12] K. Jana, A. Bhunia, A. Studer, Chem 2020, 6, 512.
[13] C. Ni, M. Hu, J. Hu, Chem. Rev. 2015, 115, 765.
Figure 2. Plausible mechanism.
[14] For some recent examples, see: a) Y. Cheng, C. Mück-Lichtenfeld, A.
Studer, J. Am. Chem. Soc. 2018, 140, 6221; b) L. Wu, F.Wang, P.
Chen, G. Liu, J. Am. Chem. Soc. 2019, 141, 1887; c) J.-X. Xiang, Y.
Ouyang, X.-H. Xu, F.-L. Qing, Angew. Chem. Int. Ed. 2019, 58,
In summary, we have developed a general method for the
efficient and divergent assembly of multisubstituted
4
This article is protected by copyright. All rights reserved.