Communications
Scheme 4. Synthesis of the ABCD aldehyde 35. Reagents and conditions: a) LiAlH4, Et2O, À208C, 92%; b) TIPSCl, imidazole, DMF, 98%; c) 6,
LDA, THF, À788C; d) DMP, py, CH2Cl2, 92% (2 steps); e) Na/Hg (5%), NaH2PO4, THF/MeOH, À108C, 92%; f) TBAF, THF, À208C (workup);
g) PPTS, CH2Cl2, 08C (83%, 2 steps); h) TBAF, AcOH, DMF, 86%; i) SO3·py; DMSO, iPr2NEt, CH2Cl2, À308C, 91%. See Ref. [9] for abbreviations.
Chem. Commun. 2004, 2138 – 2140; i) X. T. Zhou, R. G. Carter,
Angew. Chem. 2006, 118, 1819 – 1822; Angew. Chem. Int. Ed.
2006, 45, 1787 – 1790; j) X. T. Zhou, L. Lu, D. P. Furkert, C. E.
Wells, R. G. Carter, Angew. Chem. 2006, 118, 7784 – 7788;
Angew. Chem. Int. Ed. 2006, 45, 7622 – 7626; k) A. B. Dounay,
C. J. Forsyth, Org. Lett. 2001, 3, 975 – 978; l) J. Aiguade, J. L.
Hao, C. J. Forsyth, Org. Lett. 2001, 3, 979 – 982; m) J. Aiguade,
J. L. Hao, C. J. Forsyth, Tetrahedron Lett. 2001, 42, 817 – 820;
n) J. L. Hao, J. Aiguade, C. J. Forsyth, Tetrahedron Lett. 2001, 42,
821 – 824; o) C. J. Forsyth, J. L. Hao, J. Aiguade, Angew. Chem.
2006, 118, 3775 – 3779; Angew. Chem. Int. Ed. 2001, 40, 3663 –
3667; p) L. K. Geisler, S. Nguyen, C. J. Forsyth, Org. Lett. 2004,
6, 4159 – 4162; q) S. Nguyen, J. Y. Xu, C. J. Forsyth, Tetrahedron
2006, 62, 5338 – 5346; r) C. J. Forsyth, J. Y. Xu, S. T. Nguyen, I. A.
Samdal, L. R. Briggs, T. Rundberget, M. Sandvik, C. O. Miles, J.
Am. Chem. Soc. 2006, 128, 15114 – 15116; s) Y. F. Li, F. Zhou,
C. J. Forsyth, Angew. Chem. 2007, 119, 283 – 286; Angew. Chem.
Int. Ed. 2007, 46, 279 – 282; t) M. Sasaki, Y. Iwamuro, J. Nemoto,
M. Oikawa, Tetrahedron Lett. 2003, 44, 6199 – 6201; u) Y.
Ishikawa, S. Nishiyama, Tetrahedron Lett. 2004, 45, 351 – 354;
v) Y. Ishikawa, S. Nishiyama, Heterocycles 2004, 63, 539 – 565;
w) Y. Ishikawa, S. Nishiyama, Heterocycles 2004, 63, 885 – 893;
x) M. Oikawa, T. Uehara, T. Iwayama, M. Sasaki, Org. Lett.
2006, 8, 3943 – 3946.
one equivalent of TBAF at lowtemperature to form the
intermediary lactol 33, followed by treatment of the unpuri-
fied mixture with PPTS in a nonpolar solvent such as CH2Cl2.
Thus, the major and desired bis(spiroketal) isomer 34 was
obtained in overall 83% yield (2 steps).[26] The desired
bis(spiroketal) configuration of 34 was established by a key
NOE interaction between H6 and the methyl group at C14, as
also previously reported for analogous azaspiracid-derived
bis(spiroketal) structures.[2,5] Finally, chemoselective removal
of the TBDPS ether[27] (TBAF, AcOH, 86%) and subsequent
Parikh–Doering oxidation[16] (91%) afforded the desired
tetracyclic aldehyde 35.
In summary, the convergent sequence afforded the fully
elaborated ABCD aldehyde 35 in 20 linear steps and
16% overall yield. These advances led to the completion of
the synthesis of (+)-azaspiracid-1 (ent-2) as detailed in the
following Communication.[7]
Received: April 6, 2007
Keywords: ene reaction · natural products ·
.
nucleophilic addition · spiroketalization · total synthesis
[4] a) K. C. Nicolaou, Y. W. Li, N. Uesaka, T. V. Koftis, S. Vyskocil,
T. T. Ling, M. Govindasamy, W. Qian, F. Bernal, D. Y. K. Chen,
Angew. Chem. 2003, 115, 3771 – 3776; Angew. Chem. Int. Ed.
2003, 42, 3643 – 3648; b) K. C. Nicolaou, D. Y. K. Chen, Y. W. Li,
W. Y. Qian, T. T. Ling, S. Vyskocil, T. V. Koftis, M. Govindasamy,
N. Uesaka, Angew. Chem. 2003, 115, 3777 – 3781; Angew. Chem.
Int. Ed. 2003, 42, 3649 – 3653; c) K. C. Nicolaou, P. M. Pihko, F.
Bernal, M. O. Frederick, W. Y. Qian, N. Uesaka, N. Diedrichs, J.
Hinrichs, T. V. Koftis, E. Loizidou, G. Petrovic, M. Rodriquez, D.
Sarlah, N. Zou, J. Am. Chem. Soc. 2006, 128, 2244 – 2257; d) K. C.
Nicolaou, D. Y. K. Chen, Y. W. Li, N. Uesaka, G. Petrovic, T. V.
Koftis, F. Bernal, M. O. Frederick, M. Govindasamy, T. T. Ling,
P. M. Pihko, W. J. Tang, S. Vyskocil, J. Am. Chem. Soc. 2006, 128,
2258 – 2267.
[1] T. McMahon, J. Silke, Harmful Algae News 1996, 14, 2.
[2] M. Satake, K. Ofuji, H. Naoki, K. J. James, A. Furey, T.
McMahon, J. Silke, T. Yasumoto, J. Am. Chem. Soc. 1998, 120,
9967 – 9968.
[3] a) K. C. Nicolaou, P. M. Pihko, N. Diedrichs, N. Zou, F. Bernal,
Angew. Chem. 2001, 113, 1302 – 1305; Angew. Chem. Int. Ed.
2001, 40, 1262 – 1265; b) K. C. Nicolaou, W. Y. Qian, F. Bernal,
N. Uesaka, P. M. Pihko, J. Hinrichs, Angew. Chem. 2001, 113,
4192 – 4195; Angew. Chem. Int. Ed. 2001, 40, 4068 – 4071;
c) R. G. Carter, D. J. Weldon, Org. Lett. 2000, 2, 3913 – 3916;
d) R. G. Carter, D. E. Graves, Tetrahedron Lett. 2001, 42, 6035 –
6039; e) R. G. Carter, T. C. Bourland, D. E. Graves, Org. Lett.
2002, 4, 2177 – 2179; f) R. G. Carter, D. E. Graves, M. A.
Gronemeyer, G. S. Tschumper, Org. Lett. 2002, 4, 2181 – 2184;
g) R. G. Carter, T. C. Bourland, X. T. Zhou, M. A. Gronemeyer,
Tetrahedron 2003, 59, 8963 – 8974; h) X. T. Zhou, R. G. Carter,
[5] a) K. C. Nicolaou, S. Vyskocil, T. V. Koftis, Y. M. A. Yamada,
T. T. Ling, D. Y. K. Chen, W. J. Tang, G. Petrovic, M. O.
Frederick, Y. W. Li, M. Satake, Angew. Chem. 2004, 116, 4412 –
4418; Angew. Chem. Int. Ed. 2004, 43, 4312 – 4318; b) K. C.
Nicolaou, T. V. Koftis, S. Vyskocil, G. Petrovic, T. T. Ling,
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4693 –4697