5510
A. Martı´n et al. / Tetrahedron Letters 48 (2007) 5507–5511
1813; (c) Asensio, J. L.; Canada, F. J.; Chen, X. H.; Khan,
˜
Supplementary data
´
N.; Mootoo, D. R.; Jimenez-Barbero, J. Chem. Eur. J.
2000, 6, 1035–1041; (d) Rubinstenn, G.; Sinay, P.;
Berthault, P. J. Phys. Chem. A 1997, 101, 2536–2540; (e)
Experimental procedures and analytical data for all new
compounds are provided. Supplementary data associ-
ated with this article can be found, in the online version,
´
Espinosa, J. F.; Canada, F. J.; Asensio, J. L.; Martın-
˜
´
Pastor, M.; Dietrich, H.; Martın-Lomas, M.; Schmidt, R.
´
R.; Jimenez-Barbero, J. J. Am. Chem. Soc. 1996, 118,
´
10862–10871; (f) Espinosa, J. F.; Dietrich, H. J.; Martın-
´
Lomas, M.; Schmidt, R. R.; Jimenez-Barbero, J. Tetra-
References and notes
hedron Lett. 1996, 37, 1467–1470; (g) Espinosa, J. F.;
´
Canada, F. J.; Asensio, J. L.; Dietrich, H.; Martın-Lomas,
˜
´
M.; Schmidt, R. R.; Jimenez-Barbero, J. Angew. Chem.,
1. (a) Feray, L.; Kuznetsov, N.; Renaud, P. In Radicals in
Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-
VCH: Weinheim, 2001; Vol. 2, pp 246–278; (b) Robertson,
J.; Pillai, J.; Lush, R. K. Chem. Soc. Rev. 2001, 30, 94–103;
(c) Majetich, G. Tetrahedron 1995, 51, 7095–7129.
2. (a) Dorigo, A. E.; Houk, K. N. J. Am. Chem. Soc. 1987,
109, 2195–2197; (b) Dorigo, A. E.; McCarrick, M. A.;
Loncharich, R. J.; Houk, K. N. J. Am. Chem. Soc. 1990,
112, 7508–7514.
3. 1,6-HAT reaction promoted by alkoxyl radicals usually
proceeds in poor yield; only when the hydrogen atom to be
removed is bonded to an oxygen-substituted carbon atom
can the yield be considered to be of synthetic interest. (a)
Brun, P.; Waegell, B. In Reactive Intermediates; Abra-
movitch, R. A., Ed.; Plenum Press: New York, 1983; Vol.
3, pp 367–426; (b) Danishefsky, S. J.; Armistead, D. M.;
Wincott, F. E.; Selnick, H. G.; Hungate, R. J. Am. Chem.
Soc. 1987, 109, 8117–8119; (c) Kay, I. T.; Bartholomew,
´
Int. Ed. 1996, 35, 303–306; (h) Espinosa, J. F.; Martın-
Pastor, M.; Asensio, J. L.; Dietrich, H.; Martın-Lomas,
M.; Schmidt, R. R.; Jimenez-Barbero, J. Tetrahedron Lett.
1995, 36, 6329–6332; (i) Wei, A.; Haudrechy, A.; Audin,
C.; Jun, H.-S.; Haudrechy-Bretel, N.; Kishi, Y. J. Org.
Chem. 1995, 60, 2160–2169, and references cited therein;
(j) Wei, A.; Boy, K. M.; Kishi, Y. J. Am. Chem. Soc. 1995,
117, 9432–9437; (k) Wang, Y.; Goekjian, P. G.; Ryckman,
D. V.; Miller, W. H.; Babirad, S. A.; Kishi, Y. J. Org.
Chem. 1992, 57, 482–489.
´
´
8. For studies of the influence of polar factors on the
intermolecular HAT reactions, see (a) Beckwith, A. L. J.;
Zavitsas, A. A. J. Am. Chem. Soc. 1995, 117, 607–614; (b)
Zavitsas, A. A.; Chatgilialoglu, C. J. Am. Chem. Soc.
1995, 117, 10645–10654, For examples of intramolecular
HAT reactions, see: (c) Francisco, C. G.; Freire, R.;
´
´
´
Herrera, A.; Perez-Martın, I.; Suarez, E. Org. Lett. 2002,
´
4, 1959–1961.
D. Tetrahedron Lett. 1984, 25, 2035–2038; (d) Concepcion,
´
9. (a) Kim, S.; Lee, T. A.; Song, Y. Synlett 1998, 471–472; (b)
Okada, K.; Okamoto, K.; Oda, M. J. Am. Chem. Soc.
1988, 110, 8736–8738; (c) Okada, K.; Okamoto, K.; Oda,
M. J. Chem. Soc., Chem. Commun. 1989, 1636–1637; (d)
Barton, D. H. R.; Blundell, P.; Jaszberenyi, J. Cs.
Tetrahedron Lett. 1989, 30, 2341–2344; (e) Crich, D.;
Huang, X.; Newcomb, M. J. Org. Chem. 2000, 65, 523–
529; (f) Crich, D.; Huang, X.; Newcomb, M. Org. Lett.
1999, 1, 225–227.
J. I.; Francisco, C. G.; Hernandez, R.; Salazar, J. A.;
´
Suarez, E. Tetrahedron Lett. 1984, 25, 1953–1956; (e)
Martın, A.; Salazar, J. A.; Suarez, E. J. Org. Chem. 1996,
61, 3999–4006; (f) Dorta, R. L.; Martın, A.; Salazar, J. A.;
Suarez, E.; Prange, T. J. Org. Chem. 1998, 63, 2251–2261.
´
´
´
´
´
´
4. Francisco, C. G.; Herrera, A. J.; Kennedy, A. R.; Melian,
´
D.; Suarez, E. Angew. Chem., Int. Ed. 2002, 41, 856–858;
For a mini review on long range photochemical HAT in
DNA systems, see: Xu, Y.; Sugiyama, H. Angew. Chem.,
Int. Ed. 2006, 45, 1354–1362.
10. (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Grochowski,
E.; Jurczak, J. Synthesis 1976, 682–684.
5. Values in accord with molecular mechanics and X-ray
crystallographic analyses of methyl b-D-maltoside and b-
D-maltose octaacetate, respectively: Senderowitz, W.; Still,
W. C. J. Org. Chem. 1997, 62, 1427–1438; Brisse, F.;
Marchessault, R. H.; Perez, S.; Zugenmaier, P. J. Am.
Chem. Soc. 1982, 104, 7470–7476, For a definition of the
glycosidic bond torsion angles, see Ref. 7a (UH = H-10–C-
10–O–C-4; WH = C-10–O–C-4–H-4).
6. (a) Wellington, K. W.; Benner, S. A. Nucleosides Nucleo-
tides 2006, 25, 1309–1333; (b) Bililign, T.; Griffith, B. R.;
Thorson, J. S. Nat. Prod. Rep. 2005, 22, 742–760; (c) Lee,
D. Y. W.; He, M. S. Curr. Top. Med. Chem. 2005, 5, 1333–
1350; (d) Dondoni, A.; Marra, A. Chem. Rev. 2000, 100,
4395–4421; (e) Vogel, P.; Ferritto, R.; Kraehenbuehl, K.;
Baudat, A. In Carbohydrate Mimics: Concepts and Meth-
ods; Chapleur, Y., Ed.; Chemie: Weinheim, 1998; pp 19–
48, Chapter 2; (f) Togo, H.; He, W.; Waki, Y.; Yokoyama,
M. Synlett 1998, 700–717; (g) Du, Y. G.; Linhardt, R. J.;
Vlahov, I. R. Tetrahedron 1998, 54, 9913–9959; (h) Beau,
J. M.; Gallagher, T. Top. Curr. Chem. 1997, 187, 1–54; (i)
Nicotra, F. Top. Curr. Chem. 1997, 187, 55–83; (j) Levy,
D. E.; Tang, C. The Chemistry of C-Glycosides; Elsevier:
Cambridge, 1995; (k) Postema, M. H. D. Tetrahedron
1992, 48, 8545–8599.
11. For convenience, the atom-numbering system used
throughout this section and in the NMR assignments
corresponds to that depicted in the corresponding scheme,
although a IUPAC systematic nomenclature has been used
in the Supplementary data section.
12. Assignments were made by DEPT, COSY, HMBC and
HMQC experiments. The anomeric stereochemistry was
3
1
assigned on the basis of the JH1,H2 and JC1,H1 coupling
constants and intramolecular NOE experiments. Duus, J.
O.; Gotfredsen, C. H.; Bock, K. Chem. Rev. 2000, 100,
4589–4614, and references cited therein.
13. The high propensity of mannopyranosyl radicals for
quenching by stannanes along the axial direction and
formation of equatorial glycosides is well established. See,
for example: Crich, D.; Sun, S.; Brunckova, J. J. Org.
Chem. 1996, 61, 605–615, and references cited therein.
14. The deuterium position was determined by the coupling
with the geminal carbon atom and also by the small yet
significant displacement of the adjacent carbon signals in
the 13C NMR spectra, see: Berger, Sz. In Encyclopedia of
Nuclear Magnetic Resonance; Grant, D. M., Harris, R. K.,
Eds.; John Wiley: Chichester, 1996; Vol. 2, pp 1168–1172.
15. (a) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry
of Radical Reactions; VCH: Weinheim, 1996, pp 131–135;
(b) Giese, B.; Dupuis, J. Angew. Chem., Int. Ed. Engl.
1983, 22, 622–623.
´
7. For a recent review, see: (a) Jimenez-Barbero, J.; Espin-
osa, J. F.; Asensio, J. L.; Canada, F. J.; Poveda, A. Adv.
Carbohydr. Chem. Biochem. 2000, 56, 235–284; (b) Pov-
˜
16. (a) Chiba, T.; Sinay, P. Carbohydr. Res. 1986, 151, 379–
389; (b) Blattner, R.; Ferrier, R. J.; Renner, R. J. Chem.
eda, A.; Asensio, J. L.; Polat, T.; Bazin, H.; Linhardt, R.
´
J.; Jimenez-Barbero, J. Eur. J. Org. Chem. 2000, 1805–