Our interest in 2′(3′)-amino-2′(3′)-deoxyguanosine origi-
nates from its value in mechanistic investigations of the group
I ribozyme, which efficiently catalyzes nucleotidyl transfer
between an oligonucleotide substrate and guanosine.8 Previ-
ous metal ion rescue experiments9 and crystal structures10
have implicated metal ions in the catalytic mechanisms of
exon-ligation and intron-excision. However, whether three
metal ions (Figure 1A) or two metal ions (Figure 1B)
Defining the interactions between 3′-amino-3′-deoxy-
guanosine and the ribozyme requires knowledge of the amine
pKa, as protonation may compete with metal ion coordina-
tions and influence binding of the guanosine analogue to the
ribozyme. Eckstein et al. have used 13C NMR to determine
the ribofuranosyl amine pKa of 2′-amino-2′-deoxycytidine
in a dinucleotide.12 The corresponding pKa value for 2′-
amino-2′-deoxyguanosine has not been determined by NMR
but was inferred from biochemical experiments.11 We wanted
to use 15N NMR to determine the pKa values of 2′(3′)-amino-
2′(3′)-deoxyguanosine, which requires the installation of a
15N-enriched amino group at the 2′(3′)-R position of gua-
nosine. The low natural abundance of 15N (0.36%) allows
facile chemical shift assignment of 15N-enriched (98%)
nuclei, which yield one singlet in the 15N NMR spectrum.
Moreover, the ionization state of the amine influences the
15N chemical shift, allowing a sensitive and convenient way
to determine the pKa of the amino group.13 Herein, we
describe the first syntheses of 2′-15N-amino-2′-deoxyadeno-
sine, 2′-15N-amino-2′-deoxyguanosine, and 3′-15N-amino-3′-
deoxyguanosine and determination of their pKa values using
15N NMR.
To synthesize 2′(3′)-15N-amino-2′(3′)-deoxyguanosine, we
considered strategies that introduce the 15N atom into the
C-2′- or C-3′ position of guanosine using the commercially
available 15N-labeled reagents. Some of these include 15NH3,
PhCH215NH2, and phthalimide-15N potassium salt. Consider-
ing the nucleophilicity of these 15N-labeled reagents, the most
straightforward approach would involve SN2 displacement
reactions with the 2′- or 3′-â-triflate derivative of guanosine.
Iodide or bromide has been reported to displace the 2′-â-
triflate from the 3′,5′-O-disilyl protected guanosine derivative
(1b) to give the corresponding 2′-R-halo-2′-deoxyguanosine
derivatives.14 We recently reported that t-butylthiol15 reacts
with 1b smoothly to generate a 2′-t-butylthio-2′-deoxygua-
nosine derivative. Direct SN2 displacement reaction of 1b
with amines, however, has not been reported.
We first tried to introduce the 2′-amino group directly by
treating 1b with ammonia but obtained no desired product
under various conditions.16 The 2′-â-triflate derivatives of
adenosine, cytosine and uridine react with phthalimide to
afford the corresponding 2′-R-phthalimido analogues.17 How-
ever, we observed no reaction for guanosine analogue 1b
under similar conditions. Based on the previous work
showing that the 2′-â-triflate derivative of adenosine (1a)
reacts with methylamine and dimethylamine,18 we attempted
Figure 1. Models of the transition state for both step 1 and step
2 of the group I intron RNA splicing reaction with (A) three
catalytic metals and (B) two catalytic metals. In both models, there
is a metal ion, MA or M1, which coordinates with the 3′-hydroxyl
group of the U-1 residue. However, in the three-metal ion model,
two distinct metal ions, MB and MC, coordinate with the 3′- and
2′-hydroxyl groups of guanosine, respectively, whereas in the two-
metal ion model, M2 coordinates with both the 3′- and 2′-hydroxyl
groups.10
contribute to transition-state interactions remains unclear. The
crystal structure of the Azoarcus intron suggests that the 3′-
oxygen of the guanosine cofactor interacts with M2 in the
ground state (Figure 1B). The guanosine analogue, 3′-amino-
3′-deoxyguanosine, provides a probe to test this interaction
via metal ion rescue experiments in the same manner that
studies using 2′-amino-2′-deoxyguanosine have established
the interaction between MC and the guanosine 2′-hydroxyl
group as shown in Figure 1A.11
(6) (a) Pham, J. W.; Radhakrishnan, I.; Sontheimer, E. J. Nucleic Acids
Res. 2004, 32, 3446. (b) Shan, S. O.; Herschlag, D. Biochemistry 1999, 38,
10958. (c) John, D. M.; Weeks, K. M. Chem. Biol. 2000, 7, 405. (d) John,
D. M.; Weeks, K. M. Biochemistry 2002, 41, 6866. (e) Chamberlin, S. I.;
Weeks, K. M. J. Am. Chem. Soc. 2000, 122, 216. (f) Gordon, P. M.;
Sontheimer, E. J.; Piccirilli, J. A. Biochemistry 2000, 39, 12939. (g) Gordon,
P. M.; Fong, R.; Deb, S. K.; Li, N.-S.; Schwans, J. P.; Piccirilli, J. A. Chem.
Biol. 2004, 11, 1. (h) Yoshida, A.; Shan, S.; Herschlag, D.; Piccirilli, J. A.
Chem. Biol. 2000, 7, 85.
(7) Persson, T.; S. C.; Hartmann, R. K. J. Biol. Chem. 2003, 278, 43394.
(8) Doherty, E. A.; Doudna, J. A. Ann. ReV. Biochem. 2001, 30, 457.
(9) (a) Hougland, J. L.; Kravchuk, A. V.; Herschlag, D.; Piccirilli, J. A.
PLoS Biol. 2005, 3 (9), 1536. (b) Yoshida, A.; Sun, S.-G.; Piccirilli, J. A.
Nat. Struct. Biol. 1999, 6, 318. (c) Sjogren, A. S.; Pettersson, E.; Sjoberg,
B. M.; Stromberg, R. Nucleic Acids Res. 1997, 25, 648. (d) Weinstein, L.
B.; Jones, B.; Cosstick, R.; Cech, T. R. Nature 1997, 388, 805. (e) Piccirilli,
J. A.; Vyle, J. S.; Caruthers, M. H.; Cech, T. R. Nature 1993, 361, 85.
(10) (a) Adams, P. L.; Stahley, M. R.; Kosek, A. B.; Wang, J.; Strobel,
S. A. Nature 2004, 430, 45. (b) Stahley, M. R.; Strobel, S. A. Science 2005,
309, 1587.
(11) (a) Shan, S.; Herschlag, D. Biochemistry 1999, 38, 10958. (b) Shan,
S.; Narlikar, G. J.; Herschlag, D. Biochemistry 1999, 38, 10976.
(12) Aurup, H.; Tuschl, T.; Benseler, F.; Ludwig, J.; Eckstein, F. Nucleic
Acids Res. 1994, 22, 20.
(13) Zhu, L.; Demple, M. D.; Yuan, P.; Prendergas, F. G. Biochemistry
1995, 34, 13196.
(14) Gruen, M.; Becker, C.; Beste, A.; Siethof, C.; Scheidig, A. J.; Goody,
R. S. Nucleosides Nucleotides 1999, 18, 137.
(15) Schwans, J. P.; Cortez, C. N.; Olvera, J. M.; Piccirilli, J. A. J. Am.
Chem. Soc. 2003, 125, 10012.
(16) Dai, Q.; Deb, S. K.; Hougland, J. L.; Piccirilli, J. A. Bioorg. Med.
Chem. 2006, 14, 705.
(17) Karpeisky, A.; Sweedler, D.; Haeberli, P.; Read, J.; Jarvis, K.;
Beigelman, L. Bioorg. Med. Chem. Lett. 2002, 12, 3345.
(18) Ishida, N.; Tanaka, T.; Atami, T. Jpn. Kokai Tokkyo Koho 1985,
JP, 60228497, A2, 19851113.
3058
Org. Lett., Vol. 9, No. 16, 2007