10.1002/anie.202100668
Angewandte Chemie International Edition
RESEARCH ARTICLE
[14] A review: S. Vasquez-Céspedes, X. Wang, F. Glorius, ACS Catal. 2018, 8, 242.
[15] a) J. Ryu, J. Kwak, K. Shin, D. Lee, S. Chang, J. Am. Chem. Soc. 2013, 135,
12861; b) Y. Hwang, Y. Park, S. Chang, Chem. Eur. J. 2017, 23, 11147; c) S.
Kim, P. Chakrasali, H. S. Suh, N. K. Mishra, T. Kim, S. H. Han, H. S. Kim, B. M.
Lee, S. B. Han, I. S. Kim, J. Org. Chem. 2017, 82, 7555; d) W.-H. Li, L. Dong,
Adv. Synth. Catal. 2018, 360, 1104; e) S. Y. Hong, Y. Park, Y. Hwang, Y. B.
Kim, M.-H. Baik, S. Chang, Science 2018, 359, 1016; f) Y. Hwang, Y. Park, Y.
B. Kim, D. Kim, S. Chang, Angew. Chem. Int. Ed. 2018, 57, 13565; Angew.
Chem. 2018, 130, 13753; g) Y. Park, S. Chang, Nat. Catal. 2019, 2, 219; h) S.
Huh, S. Y. Hong, S. Chang, Org. Lett. 2019, 21, 2808; i) H. Lei, T. Rovis, J. Am.
Chem. Soc. 2019, 141, 2268; j) J. S. Burman, R. J. Harris, C. M. B. Farr, J.
Bacsa, S. B. Blakey, ACS Catal. 2019, 9, 5474; k) T. Knecht, S. Mondal, J.-H.
Ye, M. Das, F. Glorius, Angew. Chem. Int. Ed. 2019, 58, 7117; Angew. Chem.
2019, 131, 7191; l) H. Wang, Y. Park, Z. Bai, S. Chang, G. He, G. Chen, J. Am.
Chem. Soc. 2019, 141, 7194; m) Y. Hwang, H. Jung, E. Lee, D. Kim, S. Chang,
J. Am. Chem. Soc. 2020, 142, 8880.
This work was supported by Hong Kong Research Grants Council
(HKU 17301817, 17304019) and Basic Research Program-
Shenzhen
Fund
(JCYJ20170412140251576
and
JCYJ20180508162429786). We acknowledge the funding support
from the Innovation Technology Commission of Hong Kong SAR of
the People's Republic of China for supporting the research in the
areas of Synthetic Chemistry. We thank Dr. Xiao-Yong Chang for
assistance in the X-ray crystal structure determination of compound 6l.
Keywords: Acylnitrene transfer
•
C–N bond formation
•
porphyrinoids • ruthenium • RuV-imido complex
[1]
Selected recent reviews: a) H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417;
b) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel, J.-Q. Yu, Chem. Soc. Rev. 2009, 38,
3242; c) H. Lu, X. P. Zhang, Chem. Soc. Rev. 2011, 40, 1899; d) F. Collet, C.
Lescot, P. Dauban,Chem. Soc. Rev. 2011, 40, 1926; e)C.-M. Che, V. K.-Y. Lo, C.-
Y. Zhou, J.-S. Huang, Chem. Soc. Rev. 2011, 40, 1950; f) D. Karila, R. H. Dodd,
Curr. Org. Chem. 2011, 15, 1507; g) J. L. Roizen, M. E. Harvey, J. Du Bois, Acc.
Chem. Res. 2012, 45, 911; h) T. A. Ramirez, B. Zhao, Y. Shi, Chem. Soc. Rev.
2012, 41, 931; i)D. Intrieri, P. Zardi,A. Caselli, E. Gallo, Chem. Commun. 2014, 50,
11440; j) T. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc.
Rev. 2016, 45, 2900;k) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247; l)
B. Darses, R. Rodrigues, L. Neuville, M. Mazurais, P. Dauban, Chem. Commun.
2017, 53, 493; m) J. M. Alderson, J. R. Corbin, J. M. Schomaker, Acc. Chem. Res.
2017, 50, 2147; n) D. Hazelard, P.-A. Nocquet, P. Compain, Org. Chem. Front.
2017, 4, 2500; o) R. Singh, A. Mukherjee, ACS Catal. 2019, 9, 3604; p) T.
Shimbayashi, K. Sasakura, A. Eguchi, K. Okamoto, K. Ohe, Chem. Eur. J. 2019,
25, 3156; q) H. Hayashi, T. Uchida, Eur. J. Org. Chem. 2020, 2020, 909; r) A.
Trowbridge,S. M.Walton, M. J. Gaunt, Chem.Rev. 2020, 120, 2613.
[16] a) C. L. Zhong, B. Y. Tang, P. Yin, Y. Chen, L. He, J. Org. Chem. 2012, 77,
4271; b) V. Bizet, L. Buglioni, C. Bolm, Angew. Chem. Int. Ed. 2014, 53, 5639;
Angew. Chem. 2014, 126, 5747; c) E. Haldón, M. Besora, I. Cano, X. C.
Cambeiro, M. A. Pericàs, F. Maseras, M. C. Nicasio, P. J. Pérez, Chem. Eur. J.
2014, 20, 3463; d) V. Bizet, C. Bolm, Eur. J. Org. Chem. 2015, 2854; e) S. Y.
Hong, J. Son, D. Kim, S. Chang, J. Am. Chem. Soc. 2018, 140, 12359; f) S. Y.
Hong, S. Chang, J. Am. Chem. Soc. 2019, 141, 10399; g) K. M. van Vliet, L. H.
Polak, M. A. Siegler, J. I. van der Vlugt, C. F. Guerra, B. de Bruin, J. Am. Chem.
Soc. 2019, 141, 15240; h) M. Yoshitake, H. Hayashi, T. Uchida, Org. Lett. 2020,
22, 4021.
[17] A HRMS signal was attributed to {[Ru(TPP)(NHCOMe)] + Na+},[16d] which was
proposed to derive from a Ru(NCOMe) species.
[18] a) S.-M. Au, J.-S. Huang, W.-Y. Yu, W.-H. Fung, C.-M. Che, J. Am. Chem. Soc.
1999, 121, 9120; b) S. K.-Y. Leung, W.-M. Tsui, J.-S. Huang, C.-M. Che, J.-L.
Liang, N. Zhu, J. Am. Chem. Soc. 2005, 127, 16629.
[19] a) S. Fantauzzi, E. Gallo, A. Caselli, F. Ragaini, N. Casati, P. Macchi, S. Cenini,
Chem. Commun. 2009, 3952; b) D. Intrieri, A. Caselli, F. Ragaini, P. Macchi, N.
Casati, E. Gallo, Eur. J. Inorg. Chem. 2012, 569; c) S.-M. Law, D. Chen, S. L.-F.
Chan, X. Guan, W.-M. Tsui, J.-S. Huang, N. Zhu, C.-M. Che, Chem. Eur. J.
2014, 20, 11035.
[2]
a) S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005,
44, 5188; Angew. Chem. 2005, 117, 5320; b) J. Li, L. Ackermann, Angew.
Chem. Int. Ed. 2015, 54, 8551; Angew. Chem. 2015, 127, 8671.
[3]
[4]
[5]
J. T. Groves, T. Takahashi, J. Am. Chem. Soc. 1983, 105, 2073.
[20] a) J. T. Groves, M. Bonchio, T. Carofiglio, K. Shalyaev, J. Am. Chem. Soc.
1996, 118, 8961; b) C. Wang, K. V. Shalyaev, M. Bonchio, T. Carofiglio, J. T.
Groves, Inorg. Chem. 2006, 45, 4769; c) J.-L. Zhang, C.-M. Che, Chem. Eur. J.
2005, 11, 3899.
J. DuBois,C.S.Tomooka,J. Hong,E.M. Carreira,Acc.Chem.Res.1997, 30,364.
D. Mansuy, J.-P. Mahy, A. Dureault, G. Bedi, P. Battioni, J. Chem. Soc. Chem.
Commun. 1984, 1161.
[6]
[7]
S.-M. Au, J.-S. Huang, C.-M. Che, W.-Y. Yu, J. Org. Chem. 2000, 65, 7858.
Subsequent use of NH2COPh as acylnitrene source: a) X. Liu, Y. Zhang, L.
Wang, H. Fu, Y. Jiang, Y. Zhao, J. Org. Chem. 2008, 73, 6207; b) Y. Zhang, B.
Feng, C. Zhu, Org. Biomol. Chem. 2012, 10, 9137.
[21] K.-P. Shing, B. Cao, Y. Liu, H. K. Lee, M.-D. Li, D. L. Phillips, X.-Y. Chang, C.-
M. Che, J. Am. Chem. Soc. 2018, 140, 7032.
[22] W.-X. Hu, P.-R. Li, G. X. Jiang, C.-M. Che, J. Chen, Adv. Synth. Catal. 2010,
352, 3190.
[8]
[9]
A review: K. M. van Vliet, B. de Bruin, ACS Catal. 2020, 10, 4751.
[23] W. Xiao, J. Wei, C.-Y. Zhou, C.-M. Che, Chem. Commun. 2013, 49, 4619.
[24] H. Han, S. B. Park, S. K. Kim, S. Chang, J. Org. Chem. 2008, 73, 2862.
[25] L. Liang, H. Lv, Y. Yu, P. Wang, J.-L. Zhang, Dalton Trans. 2012, 41, 1457.
[26] a) M. Nishimura, S. Minakata, T. Takahashi, Y. Oderaotoshi, M. Komatsu, J.
Org. Chem. 2002, 67, 2101; b) S. Minakata, Y. Morino, T. Ide, Y. Oderaotoshi,
M. Komatsu, Chem. Commun. 2007, 3279.
J. Kweon, S. Chang, Angew. Chem. Int. Ed. 2020, Early View; Angew.
Chem. 2020, Early View; doi.org/10.1002/anie.202013499.
[10] a) Y. Liang, Y.-F. Liang, C. Tang, Y. Yuan, N. Jiao, Chem. Eur. J. 2015, 21,
16395; b) N. Barsu, M. A. Rahman, M. Sen, B. Sundararaju, Chem. Eur. J.
2016, 22, 9135; c) F. Gao, X. Han, C. Li, L. Liu, Z. Cong, H. Liu, RSC Adv.
2018, 8, 32659; d) B. Khan, V. Dwivedi, B. Sundararaju, Adv. Synth. Catal.
2020, 362, 1195.
[27] P. Bellotti, J. Brocus, F. El Orf, M. Selkti, B. König, P. Belmont, E. Brachet, J.
Org. Chem. 2019, 84, 6278.
[11] A. Bakhoda, Q. Jiang, Y. M. Badiei, J. A. Bertke, T. R. Cundari, T. H. Warren,
Angew. Chem. Int. Ed. 2019, 58, 3421. Angew. Chem. 2019, 131, 3459.
[12] a) A. E. Hande, K. R. Prabhu, J. Org. Chem. 2017, 82, 13405; b) Q. Xing, C.-M.
Chan, Y.-W. Yeung, W.-Y. Yu, J. Am. Chem. Soc. 2019, 141, 3849; c) H. Jung,
M. Schrader, D. Kim, M.-H. Baik, Y. Park, S. Chang, J. Am. Chem. Soc. 2019,
141, 15356; d) Z. Zhou, S. Chen, Y. Hong, E. Winterling, Y. Tan, M. Hemming,
K. Harms, K. N. Houk, E. Meggers, J. Am. Chem. Soc. 2019, 141, 19048.
[13] a) Y. Park, K. T. Park, J. G. Kim, S. Chang, J. Am. Chem. Soc. 2015, 137,
4534; b) H. Wang, G. Tang, X. Li, Angew. Chem. Int. Ed. 2015, 54, 13049;
Angew. Chem. 2015, 127, 13241. c) Y. Park, J. Heo, M.-H. Baik, S. Chang, J.
Am. Chem. Soc. 2016, 138, 14020; d) X. Wang, T. Gensch, A. Lerchen, C. G.
Daniliuc, F. Glorius, J. Am. Chem. Soc. 2017, 139, 6506; e) Y. Wu, Z. Chen, Y.
Yang, W. Zhu, B. Zhou, J. Am. Chem. Soc. 2018, 140, 42; f) C. You, T. Yuan,
Y. Huang, C. Pi, Y. Wu, X. Cui, Org. Biomol. Chem. 2018, 16, 4728; g) J. Ding,
W. Jiang, H.-Y. Bai, T.-M. Ding, D. Gao, X. Bao, S.-Y. Zhang, Chem. Commun.
2018, 54, 8889; h) C. Zhou, J. Zhao, W. Guo, J. Jiang, J. Wang, Org. Lett.
2019, 21, 9315.
[28] a) J. Shi, G. Zhao, X. Wang, H. E. Xu, W. Yi, Org. Biomol. Chem. 2014, 12,
6831; b) W. Hou, Y. Yang, W. Ai, Y. Wu, X. Wang, B. Zhou, Y. Li, Eur. J. Org.
Chem. 2015, 395; c) R. Mei, J. Loup, L. Ackermann, ACS Catal. 2016, 6, 793;
d) H. Cheng, J. G. Hernández, C. Bolm, Adv. Synth. Catal. 2018, 360, 1800; e)
T. A. Shah, P. B. De, S. Pradhan, S. Banerjee, T. Punniyamurthy, J. Org.
Chem. 2019, 84, 16278; f) X. Shi, W. Xu, R. Wang, X. Zeng, H. Qiu, M. Wang,
J. Org. Chem. 2020, 85, 3911.
[29] a) Q. Shuai, G. Deng, Z. Chua, D. S. Bohle, C.-J. Li, Adv. Synth. Catal. 2010,
352, 632; b) Pd-catalyzed C3-amination of indoles gave N-sulfonyl
amines, see: Z. Hu, S. Luo, Q. Zhu, Sci. China Chem. 2015, 58, 1349.
[30] a) N. Svenstrup, A. Bogevig, R. G. Hazell, K. A. Jorgensen, J. Chem. Soc.,
Perkin Trans. 1 1999, 1559; b) Y. Kobayashi, S. Masakado, Y. Takemoto,
Angew. Chem. Int. Ed. 2018, 57, 693; Angew. Chem. 2018, 130, 701.
[31] a) H.-J. Meyer, T. Wolff, Chem. Eur. J. 2000, 6, 2809; b) P. N. D. Singh, S. M.
Mandel, R. M. Robinson, Z. Zhu, R. Franz, B. S. Ault, A. D. Gudmundsdóttir, J.
Org. Chem. 2003, 68, 7951.
8
This article is protected by copyright. All rights reserved.