J. Am. Chem. Soc. 1997, 119, 4117-4122
4117
Catalysis by Organic Solids. Stereoselective Diels-Alder
Reactions Promoted by Microporous Molecular Crystals Having
an Extensive Hydrogen-Bonded Network
Ken Endo,† Takashi Koike,† Tomoya Sawaki,† Osamu Hayashida,†,‡
Hideki Masuda,§,‡ and Yasuhiro Aoyama*,†,‡
Contribution from the Institute for Fundamental Research of Organic Chemistry,
Kyushu UniVersity, Hakozaki, Higashi-Ku, Fukuoka 812-81, Japan, CREST, Japan Science and
Technology Corporation (JST), and Department of Applied Chemistry, Nagoya Institute of
Technology, Gokiso-Cho, Showa-Ku, Nagoya 466, Japan
ReceiVed December 5, 1996X
Abstract: Anthracenebisresorcinol derivative 1 as an organic network material shows a novel catalysis in the solid
state for the acrolein-cyclohexadiene Diels-Alder reaction. The suggested mechanism involves a catalytic cycle
composed of sorption of the reactants in the cavities of polycrystalline host 1, preorganized intracavity reaction, and
desorption of the product. The host also promotes stereoselective intracavity reactions for alkyl acrylates and
cyclohexadiene but, in this case, not in a catalytic manner. Relevance of the present system as a functional organic
analog of zeolites is discussed in light of the kinetics of respective elementary processes and the effects of pulverization
of the catalyst thereupon as well as X-ray crystal structures.
Introduction
Scheme 1
Solid-state reactions constitute an important area of selective
organic reactions.1 There are also many examples of lattice
inclusion compounds,2 in which the host affects the rates and
stereochemistry of the reactions of included guest molecules.1
To the best of our knowledge, however, organic solids have
seldom been used as catalysts.3 In fact, solid or heterogeneous
catalysts including zeolites4 have so far been exclusively
inorganic materials. We are particularly interested in the
construction of organic network materials as functional analogs
of zeolites.5 Organic molecules show a remarkable diversity
not only in molecular structures but also in network dimen-
sionalities and topologies.6 The cavity sizes7 and functional
catalytic groups are also designable in principle.
molecules can be bound simultaneously in the cavity as in
adduct 1‚2(CH3CO2CH2CH3)‚2(C6H6).9 The present work is
concerned with Diels-Alder reactions (eq 1 in Scheme 1)
between enclathrated acrolein (2a) or an acrylic ester (2b-d)
We have recently shown that anthracenebisresorcinol deriva-
tive 1 (Scheme 1) forms a hydrogen-bonded network whose
cavities are capable of crystalline-phase guest-addition, -removal,
and -exchange.8 Interestingly, small polar and apolar guest
(5) For selected examples, see: (a) Barrer, R. M.; Shanson, V. H. J.
Chem. Soc., Chem. Commun. 1976, 333-334. (b) Ermer, O. J. Am. Chem.
Soc. 1988, 110, 3747-3754. (c) Weber, E.; Pollex, R.; Czugler, M. J. Org.
Chem. 1992, 57, 4068-4070. (d) Copp, S. B.; Subramanian, S.; Zaworotko,
M. J. Ibid. 1992, 114, 8719-8720. (e) Reddy, D. S.; Craig, D. C.; Rae, A.
D.; Desiraju, G. R. J. Chem. Soc., Chem. Commun. 1993, 1737-1739. (f)
Wang, X.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1994, 116, 12119-
12120. (g) Venkataraman, D.; Lee, S.; Zhang, J.; Moore, J. S. Nature 1994,
371, 591-593. (h) Reddy, D. S.; Craig, D. C.; Desiraju, G. R. J. Am. Chem.
Soc. 1996, 118, 4090-4093.
† Kyushu University.
‡ CREST.
§ Nagoya Institute for Technology.
X Abstract published in AdVance ACS Abstracts, April 1, 1997.
(1) (a) Schmidt, G. M. J. Pure Appl. Chem. 1971, 27, 647-678. (b)
Green, B. S.; Lahav, M.; Rabinovioch, D. Acc. Chem. Res. 1979, 12, 191-
197. (c) Addadi, L.; Ariel, S.; Lahav, M.; Leiserowitz, L.; Popovitz-Biro,
R.; Tang, C. P. Chem. Phys. Solids Their Surf. 1980, 8, 202-244. (d)
Scheffer, J. R. Acc. Chem. Res. 1980, 13, 283-290. (e) Desiraju, G. R.,
Ed.; Organic Solid State Chemistry; Elsevier: Amsterdam, 1987. (f)
Ramamurthy, V.; Venkatesan, K. Chem. ReV. 1987, 87, 433-481. (g) Toda,
F.; Top. Curr. Chem. 1988, 149, 211-238. (h) Toda, F. Synlett 1993, 303-
312. (i) Toda, F. Acc. Chem. Res. 1995, 28, 480-486.
(6) (a) For a list of recent publications on the formation of ordered crystal
structures involving hydrogen-bonded 1D, 2D, and 3D motifs, see: Aoyama,
Y.; Endo, K.; Anzai, T.; Yamaguchi, Y.; Sawaki, T.; Kobayashi, K.;
Kanehisa, N.; Hashimoto, H.; Kai, Y.; Masuda, H. J. Am. Chem. Soc. 1996,
118, 5562-5571. Also see: (b) MacDonald, J. C.; Whitesides, G. M. Chem.
ReV. 1994, 94, 2383-2420. (c) Valiyaveettil, S.; Enkelmann, V.; Mu¨lln,
K. J. Chem. Soc., Chem. Commun. 1994, 2097-2098. (d) Hosseini, M.
W.; Ruppert, R.; Schaeffer, P.; De Cian, A.; Kyritsakas, N.; Fischer, J.
Ibid. 1994, 2135-2136. For examples of (infinite) metal-coodination
networks, see: (e) Abrahams, B. F.; Hoskins, B. F.; Liu, J.; Robson, R. J.
Am. Chem. Soc. 1991, 113, 3045-3051. (f) Reference 3c. (g) Reference
5d. (h) Stang, P. J.; Cao, D. H.; Saito, S.; Arif, A. M. Ibid. 1995, 117,
6273-6283. (i) Fujita, M.; Kwon, Y. J.; Sasaki, O.; Yamaguchi, K.; Ogura,
K. Ibid. 1995, 117, 7287-7288.
(2) For a list of recent publications on lattice inclusion compounds, see:
Aoyama, Y.; Endo, K.; Kobayashi, K.; Masuda, H. Supramolec. Chem.
1995, 4, 229-241.
(3) For recent publications very briefly referring to apparently catalytic
behaviors of organic crystals, see: (a) Toda, F.; Tanaka, K.; Sekikawa, A.
J. Chem. Soc., Chem. Commun. 1987, 279-280. (b) Soai, K.; Watanabe,
M. Ibid. 1990, 43-44. (c) Fujita, M.; Kwon, Y. J.; Washuzu, S.; Ogura, K.
Ibid. 1994, 116, 1151-1152.
(4) (a) Ho¨lderich, W.; Hesse, M.; Na¨umann, F. Angew. Chem., Int. Ed.
Engl. 1988, 27, 226-246. (b) Suib, S. L. Chem. ReV. 1993, 93, 803-826.
(c) Breck, D. W. Zeolite Molecular SieVes, Structure, Chemistry, and Use;
John Wiley & Sons: New York, 1974.
(7) Cf., Endo, K.; Ezuhara, T.; Koyanagi, M.; Masuda, H.; Aoyama, Y.
J. Am. Chem. Soc. 1997, 119, 499-505.
S0002-7863(96)04198-4 CCC: $14.00 © 1997 American Chemical Society