G. Cheng et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1177–1180
1179
Table 1 (continued)
b
CC50 (mg/mL)
Compound
Substituent
R2
Virus A
Virus B
R1
R3
c
IC50 (mg/mL)
c
IC50 (mg/mL)
A4B6C1
A1B6C2
CH3
tert-Butyl
C1
115.56
—
—
NH
N
H
H
tert-Butyl
160.25
—
—
—
N
S
C2
N
N
N
A1B6C3
tert-Butyl
160.25
—
S
CH3
C3
A1B6C4
A3B6C2
Ribavirin
H
Cl
tert-Butyl
tert-Butyl
H
C2
16.25
9.58
—
—
—
—
>500
2.06
4.27
a Abbeviations and strains used: MDCK, Madin-Darby canine kidney cells, influenza A H3N2 viruses (A3 China/15/90).
b Concentrations that cause microscopically detectable toxicity in virus-infected cultures.
c Concentrations required to reduce virus-induced CPE in MDCK cells by 50%.
258.69 and 21.56 mg/mL, respectively. These results indi-
cated that the steric hindrance and electron-donating
group in 2-position is favorable for activity. Based on
A1B6C1, compounds with thiotriazoles (A1B6C2 and
A1B6C3) or hydrogen (A1B6C4) substituted at 5-position
were synthesized and exhibited no inhibition for influenza
A virus.
Acknowledgment
The Shanghai Commission of Science and Technology
(06PJ14112) supported this work.
Supplementary data
We investigated the electron effect on substitution of
aromatic ring at 50-position. Only compound A3B6C1
showed the weaker activity (IC50 = 48.74 mg/mL) than
A1B6C1. Oxidation of A1B6C1 gave compound F which
showed no activity against influenza A. In addition, this
series of compounds did not exhibit the potent activity
against influenza B virus (see Scheme 2).
Supplementary data associated with this article can be
References and notes
1. (a) Traxler, P.; Bold, G.; Buchdunger, E.; Caravatti, G.;
Furet, P.; Manley, P.; O’Reilly, T.; Wood, J.; Zimmer-
mann, J. Med. Res. Rev. 2001, 21, 499; (b) Zimmermann, J.;
Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N. B. Bioorg.
Med. Chem. Lett. 1997, 7, 187; (c) Ghosh, U.; Ganessunker,
D.; Sattigeri, V. J.; Carlson, K. E.; Mortensen, D. J.;
Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Bioorg.
Med. Chem. 2003, 11, 629; (d) Bennett, G. B.; Mason, R.
B.; Alden, L. J.; Roach, J. B. J. Med. Chem. 1978, 21, 623.
2. (a) Xie, F.; Cheng, G.; Hu, Y. J. Comb. Chem. 2006, 8, 286;
(b) Xie, F.; Li, S.; Bai, D.; Lou, L.; Hu, Y. J. Comb. Chem.
2007, 9, 12.
3. (a) Hisaki, M.; Imabori, H.; Azuma, M.; Suzutani, T.;
Iwakura, F.; Ohta, Y.; Kawanishi, K.; Ichigobara, Y.;
Node, M.; Nishide, K.; Yoshida, I.; Ogasawara, M.
Antiviral Res. 1999, 42, 121; (b) Papakonstantinou-Garouf-
alias, S.; Filippatos, E.; Todoulou, Q.; Tsantili-Kakouli-
dou, A.; Papadaki-Valiraki, A. Il Farmaco 1997, 52, 707; (c)
De Clercq, E. J. Clin. Virol. 2004, 30, 115; (d) Selvam, P.;
Murugesh, N.; Chandramohan, M.; Sidwell, R. W.; Wan-
dersee, M. K.; Smee, D. F. Antiviral Chem. Chemother.
2006, 17, 269.
In summary, we have developed a mild and convenient
method for the synthesis of 5-azolylthiopyridines based
upon a consecutive Michael-addition, condensation se-
quence. This method provides facile construction of
these bis-heterocycle libraries that are applicable for bio-
logical screening. Biological responses of these 5-azolyl-
thiopyridines against influenza virus
A
were
preliminarily evaluated, and the results showed that
compound A1B6C1 has inhibitory potency as lead for
the development of de novo antiviral agents. Further
studies on their structure–activity relationship and opti-
mization of these compounds are underway in our
group.
OH
N
N
OH
N
N
N
CH2Cl2
r.t
mCPBA
4. Wang, W.-L.; Yao, D.-Y.; Gu, M.; Fan, M.-Z.; Li, J.-Y.;
Xing, Y.-C.; Nan, F.-J. Bioorg. Med. Chem. Lett. 2005, 15,
5284.
5. Sugita, Y.; Yin, S.; Yokoe, I. Heterocycles 2000, 53, 2191.
6. (a) Frasinyuk, M. S.; Khilya, V. P. Chem. Heterocycl.
Compd. 1999, 35, 3; (b) Khilya, V. P.; Turov, A. V.;
Tkschuk, T. M.; Shevchuk, L. I. Chem. Nat. Compd. 2001,
S
O
N
S
N
N
43%
A1B6C1
Scheme 2. Oxidation of compound A1B6C1.
F