Braverman et al.
δ 130.2 (dCH-), 102.2 (dC-), 78.6 (-CH2-). IR (neat): 1165,
1220, 1354, 1597, 3105 cm-1. MS (CI/CH4): m/z 246 (M+, 100%),
182 ((M-SO2)+, 6%), 152 ((I-CtC-H)+, 33%), 127 (I+, 27%),
119 ((M-I)+, 55%). HRMS (elemental composition): calcd
(C3H3O3SI) 245.8848; found 245.8850.
4-Iodo-5-methyl-5H-1,2-oxathiole 2,2-dioxide (8b). (Yield
82%) Was obtained as a white solid after recrystallization from
cold ether/pentane.
Mp 86-87 °C. 1H NMR (300 MHz, CDCl3): δ 7.04 (d, J ) 2.0
Hz, 1H), 5.27 (qd, J ) 7.0, 2.0 Hz, 1H), 1.68 (d, J ) 7.0 Hz, 3H).
13C NMR (75 MHz, CDCl3): δ 131.1 (dCH-), 110.1 (dC-),
86.8 (-CH-), 20.2 (-CH3). IR (neat): 1165, 1218, 1342, 1591,
3094 cm-1. MS (CI/CH4): m/z 261 (MH+, 26%), 260 (M+, 95%),
245 ((M- CH3)+, 33%), 181 ((C4H6I+), 11%), 152 ((I-CtC-
H)+, 38%), 133 ((M-I)+, 100%), 127 (I+, 15%). HRMS (elemental
composition): calcd (C4H5O3SI) 259.9004; found 259.9004.
4-Iodo-5,5-dimethyl-5H-1,2-oxathiole 2,2-dioxide (8c). (Yield
89%) Was obtained as a white solid after recrystallization from
cold ether/pentane.
Mp 95-96.5 °C. 1H NMR (300 MHz, CDCl3): δ 6.93 (s, 1H),
1.67 (s, 6H). 13C NMR (75 MHz, CDCl3): δ 131.2 (dCH-), 116.3
(dC-), 94.7 (-C-), 26.9 (2×(-CH3)). IR (neat): 1151, 1216,
1346, 1591 cm-1. MS (CI/CH4): m/z 274 (MH+, 42%), 259 ((M-
CH3)+, 100%), 86 (36%), 84 (58%). HRMS (elemental composi-
tion): calcd (C5H7O3SI) 273.9161; found 273.9159.
4-Iodo-1-oxa-2-thiaspiro[4.5]dec-3-ene 2,2-dioxide (8d). (Yield
78%) Was obtained as a white solid upon silica gel chromatography,
using hexane/ethyl acetate in the ratio 5:1, respectively, as eluent,
of the cold ether soluble portion of the crude oxidation product.
Mp 114-115 °C. 1H NMR (300 MHz, CDCl3): δ 6.95 (s, 1H),
1.99-1.67 (m, 9H), 1.31-1.18 (m, 1H). 13C NMR (75 MHz,
CDCl3): δ 130.6 (dCH-), 117.0 (dC-), 96.5 (-C-), 34.6
(-CH2-), 23.9 (-CH2-), 21.3 (-CH2-). IR (neat): 1171, 1223,
1339, 1514 cm-1. MS (CI/CH4): m/z 314 (M+, 2%), 187 (50%),
139 (100%). HRMS (elemental composition): calcd (C8H11O3SI)
313.9474; found 313.9459.
Sodium 2-Cyclohexylideneethylenesulfonate (9d, R ) Na+
Salt). (Yield 100%) Was obtained as a white solid.
1H NMR (600 MHz, CD3OD): δ 5.94 (quint, J ) 1.8 Hz, 1H),
2.26-2.21 (m, 4H), 1.75-1.67 (m, 2H), 1.62-1.54 (m, 4H). 13C
NMR (150 MHz, CD3OD): δ 198.1 (dCd), 110.3 (dC-),
98.3 (dCH-), 31.7 (2×(-CH2-)), 28.0 (2×(-CH2-)), 26.9
(-CH2-). MS (ES-): m/z 187 (M-, 100%). HRMS FB- (elemental
composition): calcd (C8H11O3S) 187.0429; found 187.0428.
Sodium 3-Phenylallene-1-sulfonate (9e, R ) Na+ Salt). (Yield
100%) Was obtained as a white solid.
1H NMR (300 MHz, CD3OD): δ 7.39-7.20 (m, 5H), ABq: 6.63
and 6.55 (d, J ) 6.3 Hz, 1H each). 13C NMR (75 MHz, CD3OD):
δ 205.3 (dCd), 134.0 (dC-, ipso), 129.7 (dCH-), 128.8 (d
CH-), 128.5 (dCH-) (Ar), 104.0 (dCH-), 100.6 (dCH-). MS
(ES-): m/z 195 (M-, 100%). HRMS FB- (elemental composi-
tion): calcd (C9H7O3S) 195.0116; found 195.0126.
Reaction of â-Halo γ-Sultones with NaN3 (2 equiv) in DMSO.
To a solution of the appropriate γ-sultone (∼0.06 ( 0.01 M) in
d6-DMSO in an NMR tube at room temperature, was added sodium
azide (2 equiv). The reaction mixture was shaken and kept at room
temperature for the appropriate time, determined by 1H NMR (Table
3). Then, methylene chloride was added, and the organic mixture
was washed with water 10 times. After drying over anhydrous
MgSO4 and removal of the solvent under reduced pressure, the
products were isolated and mixtures separated by column chroma-
tography using silica gel with chloroform as eluent.
2,2-Dioxido-5H-1,2-oxathiol-4-yl azide (10a). (Yield 100%)
Was obtained as a colorless liquid.
1H NMR (300 MHz, CDCl3): δ 6.43 (t, J ) 1.8 Hz, 1H), 4.83
(d, J ) 1.8 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ 150.3
(dC-), 106.4 (dCH-), 69.2 (-CH2-). IR (neat): 1171, 1288,
1347, 1617, 2129, 2164, 3104 cm-1. MS (CI/CH4): m/z 162 (MH+,
70%), 119 (26%), 104 (100%), 103 (92%), 69 (64%). HRMS
(elemental composition): calcd (C3H4N3O3S) 161.9973; found
161.9969.
4-Azido-5-methyl-5H-1,2-oxathiole 2,2-dioxide (10b). (Yield
100%) Was obtained as a colorless liquid.
4-Iodo-5-phenyl-5H-1,2-oxathiole 2,2-dioxide (8e). (Yield 82%)
Was obtained as a white crystals after recrystallization from cold
ether and washing with pentane.
1H NMR (300 MHz, CDCl3): δ 6.39 (d, J ) 1.5 Hz, 1H), 5.06
(qd, J ) 6.6, 1.5 Hz, 1H), 1.58 (d, J ) 6.6 Hz, 3H). 13C NMR (75
MHz, CDCl3): δ 154.2 (dC-), 106.0 (dCH-), 78.8 (-CH-),
18.5 (-CH3). IR (neat): 1170, 1271, 1344, 1614, 2125, 2158, 3092
cm-1. MS (CI/CH4): m/z 176 (MH+, 99%), 104 (55%), 84 (100%).
HRMS (elemental composition): calcd (C4H6N3O3S) 176.0129;
found 176.0130.
1
Mp 149.5-150.5 °C. H NMR (300 MHz, CDCl3): δ 7.49-
7.46 (m, 3H), 7.40-7.37 (m, 2H), 6.18 (d, J ) 2.1 Hz, 1H), 6.02
(d, J ) 2.1 Hz, 1H). 13C NMR (75 MHz, CDCl3): δ 132.4 (dC-
ipso), 130.7 (dCH-), 130.7 (dCH-), 129.2 (dCH-), 128.1 (d
CH-), 109.6 (dC-), 91.4 (-CH-). IR (neat): 1160, 1213, 1340,
1646 cm-1. MS (CI/CH4): m/z 322 (M+, 11%), 241 (39%), 195
(21%), 131 (60%), 115 (100%). HRMS (elemental composition):
calcd (C9H7O3SI) 321.9161; found 321.9178.
4-Azido-5,5-dimethyl-5H-1,2-oxathiole 2,2-dioxide (10c). (Yield
100%) Was obtained as a white solid.
1
Mp 93-94 °C. H NMR (300 MHz, CDCl3): δ 6.29 (s, 1H),
1.61 (s, 6H). 13C NMR (75 MHz, CDCl3): δ 157.4 (dC-), 105.4
(dCH-), 88.3 (-C-), 25.5 (2×(-CH3)). IR (neat): 1154, 1248,
1326, 1614, 2150, 3085 cm-1. MS (CI/CH4): m/z 190 (MH+, 3%),
86 (68%), 84 (100%). HRMS (elemental composition): calcd
(C5H8N3O3S) 190.0278; found 190.0286.
Conversion of â-Iodo γ-Sultones (8) to Allenesulfonates (9).
To a solution of the appropriate γ-sultone (∼0.05 ( 0.01 M) in
d6-DMSO or d6-acetone in an NMR tube was added the appropriate
nucleophile (Table 2), and the reaction mixture was shaken. After
the appropriate time at room temperature (except in one case, 8b
with NaI at 56 °C), determined by 1H NMR, the pure sodium
allenesulfonate salts were precipitated from the acetone solutions,
washed with d6-acetone, and dried in the air.
H-D Exchange of the γ-Sultones in CD3OD. To a solution of
the appropriate γ-sultone (∼0.05 ( 0.01 M) in CD3OD in an NMR
tube at room temperature (except in one case, 11c at 55 °C) was
added the appropriate base (Table 4), and the reaction mixture was
Sodium Buta-1,2-diene-1-sulfonate (9b, R ) Na+ Salt). (Yield
100%).
1
shaken. After the appropriate time, determined by H NMR, the
solvent was removed under reduced pressure, and the products were
isolated.
1H NMR (300 MHz, d6-DMSO): δ 5.86 (dq, J ) 6.0, 3.0 Hz,
1H), 5.33 (qd, J ) 7.2, 6.0 Hz, 1H), 1.63 (dd, J ) 7.2, 3.0 Hz,
3H). 13C NMR (150 MHz, d6-DMSO): δ 201.3 (dCd), 101.4
(dCH-), 89.1 (dCH-), 21.1 (-CH3).
Computational Methods. All species were optimized employing
the mPW91PW91 density functional17 with the 6-31+G(d) basis
set.18 Frequency calculations were performed to analyze the
stationary points on the potential energy surface, and these
confirmed the location of minimum energy structures. Subsequently,
single-point calculations were performed at the mPW91PW91/6-
Sodium 3-Methylbuta-1,2-diene-1-sulfonate (9c, R ) Na+
Salt). (Yield 100%) Was obtained as a white solid.
1H NMR (600 MHz, CD3OD): δ 5.94 (septet, J ) 2.7 Hz, 1H),
1.79 (d, J ) 2.7 Hz, 6H). 13C NMR (150 MHz, CD3OD): δ 201.2
(dCd), 103.4 (dC-), 98.5 (dCH-), 20.0 (2×(-CH3)). MS
(ES-): m/z 147 (M-, 100%). HRMS FB- (elemental composi-
tion): calcd (C5H7O3S) 147.0116; found 147.0121.
(17) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664-675.
(18) Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio
Molecular Orbital Theory; John Wiley & Sons: New York, 1986.
6830 J. Org. Chem., Vol. 72, No. 18, 2007