Communications
could be efficiently controlled from a single methyl
group of cyclopentone 10, which was originally obtained
from the inexpensive (R)-pulegone. Further studies are
underway in our laboratory toward the synthesis of
halichlorine.
Received: April 11, 2007
Published online: June 25, 2007
Keywords: alkaloids · asymmetric synthesis · metathesis ·
.
natural products · total synthesis
[1] a) H. Van Den Bosch, Biochim. Biophys. Acta Biomembr.
1980, 604, 191 – 246; b) H. Arita, T. Nakano, K. Hanasaki,
Prog. Lipid Res. 1989, 28, 273 – 301.
[2] D. K. Kim, I. Kudo, Y. Fujimori, H. Mizushima, M.
Masuda, R. Kikuchi, K. Ikizawa, K. Inoue, J. Biochem.
1990, 108, 903 – 906.
[3] T. Chou, M. Kuramoto, Y. Otani, M. Shikano, K. Yazawa,
D. Uemura, Tetrahedron Lett. 1996, 37, 3871 – 3874.
[4] a) M. Kuramoto, T. Chou, K. Yamada, T. Chiba, Y.
Hayashi, D. Uemura, Tetrahedron Lett. 1996, 37, 3867 –
3870; b) H. Arimoto, I. Hayakawa, M. Kuramoto, D.
Uemura, Tetrahedron Lett. 1998, 39, 861 – 862.
[5] D. Uemura, T. Chou, T. Haino, A. Nagatsu, S. Fukuzawa,
S.-z. Zheng, H.-s. Chen, J. Am. Chem. Soc. 1995, 117, 1155 –
1156.
Scheme 4. End game to pinnaic acid by cross-olefin-metathesis installation
of the side chains. Reagents and conditions: a) ethyl methacrylate, 25 (10
mol%), neat, reflux, 26 (74%) + 27 (14%);b) HF·(py) x/py (1:2), 458C;c)
o-NO2PhSeCN, nBu3P, THF, RT;then mCPBA, RT, 90% over two steps;d) 28
(5.5 equiv), 30 (80 mol%), toluene, 908C, 40% (69% based on the recovered
starting material);e) HF·py/py (1:3), 25 8C;f) NaBH 4, EtOH, 258C;then
NaOH (1.6m in 1:2 EtOH/H2O), 408C, 86% in two steps. Cy=cyclohexyl,
Mes=mesityl.
[6] L. Osborn, C. Hession, R. Tizard, C. Vassallo, S. Luhow-
skyj, G. Chi-Rosso, R. Lobb, Cell 1989, 59, 1203 – 1211.
[7] D. L. J. Clive, M. Yu, J. Wang, V. S. C. Yeh, S. Kang, Chem. Rev.
2005, 105, 4483 – 4514.
guration. The homodimer of 23 was also formed in the above
metathesis (14% yield). When the isolated dimer 27 was
subjected again to the same reaction conditions, the dimer
reached an equilibrium with 26. TBDPS deprotection and
Grieco elimination generated the terminal alkene 29.
[8] Recent synthetic studies: a) A. L. de Sousa, R. A. Pilli, Org. Lett.
2005, 7, 1617 – 1619; b) D. G. Hilmey, L. A. Paquette, Org. Lett.
2005, 7, 2067 – 2069; c) D. G. Hilmey, J. C. Gallucci, L. A.
Paquette, Tetrahedron 2005, 61, 11000 – 11009; d) E. Roulland,
A. Chiaroni, H.-P. Husson, Tetrahedron Lett. 2005, 46, 4065–
4068; for the formal synthesis: e) Y. Matsumura, S. Aoyagi, C.
Kibayashi, Org. Lett. 2004, 6, 965– 968; f) H.-L. Zhang, G. Zhao,
Y. Ding, B. Wu, J. Org. Chem. 2005, 70, 4954 – 4961; g) R. B.
Andrade, S. F. Martin, Org. Lett. 2005, 7, 5733 – 5735; h) H. Kim,
J. H. Seo, K. J. Shin, D. J. Kim, D. Kim, Heterocycles 2006, 70,
143 – 146.
[9] a) M. W. Carson, G. Kim, M. F. Hentemann, D. Trauner, S. J.
Danishefsky, Angew. Chem. 2001, 113, 4582 – 4584; Angew.
Chem. Int. Ed. 2001, 40, 4450 – 4452; b) M. W. Carson, G. Kim,
S. J. Danishefsky, Angew. Chem. 2001, 113, 4585 – 4588; Angew.
Chem. Int. Ed. 2001, 40, 4453 – 4456; c) D. Trauner, J. B. Schwarz,
S. J. Danishefsky, Angew. Chem. 1999, 111, 3756 – 3758; Angew.
Chem. Int. Ed. 1999, 38, 3542 – 3545;d) during the preparation of
this manuscript, another asymmetric total synthesis of pinniac
acid was published: H. Wu, H. Zhang, G. Zhao, Tetrahedron
2007, 63, 6454 – 6461.
[10] H. Christie, C. H. Heathcock, Proc. Natl. Acad. Sci. USA 2004,
101, 12079 – 12084.
[11] a) I. Hayakawa, H. Arimoto, D. Uemura, Heterocycles 2003, 59,
441 – 444; b) H. Arimoto, S. Asano, D. Uemura, Tetrahedron
Lett. 1999, 40, 3583 – 3586; c) I. Hayakawa, H. Arimoto, D.
Uemura, Chem. Commun. 2004, 1222 – 1223.
[12] a) B. M. Trost, D. M. T. Chan, J. Am. Chem. Soc. 1979, 101,
6429 – 6432; b) R. Baker, R. B. Keen, J. Organomet. Chem. 1985,
285, 419 – 427.
[13] a) A. K. Chatterjee, T. L. Choi, D. P. Sanders, R. H. Grubbs, J.
Am. Chem. Soc. 2003, 125, 11360 – 11370; b) K. C. Nicolaou,
P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4564 – 4601;
Angew. Chem. Int. Ed. 2005, 44, 4490 – 4527.
In the previous attempts toward pinnaic acid,[9–11] using
the Wittig-based protocol, the configuration of the C17
alcohol was generated by a diastereoselective reduction of
the Wittig products (dienones). Here we offer a second
choice: In our cross-metathesis-based strategy, the C17 center
of segment 28 was established (90% ee) before installation to
the spirocyclic core 29. Synthesis of the diene 28 from but-3-
yn-1-ol consisted of a six-step transformation where the
Corey–Bakshi–Shibata reduction[23] was a key step.[14] The
next step was the cross-metathesis again. However, in the two
precursors 28 and 29, there are a total of four types of carbon–
carbon double bonds which made the reaction even more
challenging than the upper side-chain case. Fortunately, the
two terminal double bonds proved to be more reactive,
presumably for steric reasons, and led to the fully protected
pinnaic acid 31 as a single trans isomer (C15–C16 bond) in
69% yield (based on 42% recovered starting material). Next,
after successive deprotection of the two silyl protecting
groups, the TFA amide, and the ethyl ester by the usual
method,[9b] the chiral pinnaic acid was obtained in the sodium
salt form, which is identical with the synthetic racemic pinnaic
1
acid sodium salt on comparison of the H NMR spectra.[10]
In conclusion, we have successfully completed the effi-
cient asymmetric total synthesis of pinnaic acid through a
strategy involving Pd-TMM [3+2] cyclization, four-step
tandem hydrogenation-cyclization, and cross-olefin-metathe-
sis reactions. Except for that of C17, all of the stereochemistry
5748
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 5746 –5749