1410
R. G. de Noronha et al. / Tetrahedron Letters 50 (2009) 1407–1410
mixture. The results obtained showed that the catalytic activity of
MoO2Cl2 did not decrease with successive uses.
References and notes
1. (a) Pearson, D. E.; Buehler, C. Synthesis 1972, 533–542; (b) Kusama, H.;
Narasaka, K. Bull. Chem. Soc. Jpn. 1995, 68, 2379–2383; (c) Desmurs, J. R.;
Labrouillère, M.; Le Roux, C.; Gaspard, H.; Laporterie, A.; Dubac, J.
Tetrahedron Lett. 1997, 38, 8871–8874; (d) Kobayashi, S.; Iwamoto, S.
Tetrahedron Lett. 1998, 39, 4697–4700; (e) Choudary, B. M.; Chowdari, N.
S.; Kantam, M. L.; Kannan, R. Tetrahedron Lett. 1999, 40, 2859–2862; (f)
Singh, R. P.; Kamble, R. M.; Chandra, K. L.; Saravanan, P.; Singh, V. K.
Tetrahedron 2001, 57, 241–247; (g) Choudhary, V. R.; Jana, S. K.; Patil, N. S.
Tetrahedron Lett. 2002, 43, 1105–1107; (h) Rèpichet, S.; Le Roux, C.; Roques,
N.; Dubac, J. Tetrahedron Lett. 2003, 44, 2037–2040; (i) Firouzabadi, H.;
Iranpoor, N.; Nowrouzi, F. Tetrahedron 2004, 60, 10843–10850; (j) Shih, P.-C.;
Wang, J.-H.; Mou, C.-Y. Catal. Today 2004, 93–94, 365–370; (k) Arai, S.; Sudo,
Y.; Nishida, A. Tetrahedron 2005, 61, 4639–4642; (l) Gopalakrishnan, M.;
Sureshkumar, P.; Kanagarajan, V.; Thanusu, J. Catal. Commun. 2005, 6, 753–
756; (m) Kantam, M. L.; Rangananjan, K. V. S.; Sateesh, M.; Kumar, K. B. S.;
Choudary, B. M. J. Mol. Catal. A.: Chem. 2005, 225, 15–20; (n) Jang, D. O.;
Moon, K. S.; Cho, D. H.; Kim, J.-G. Tetrahedron Lett. 2006, 47, 6063–6066; (o)
Sartori, G.; Maggi, R. Chem. Rev. 2006, 106, 1077–1104; (p) Li, C.; Liu, W.;
Zhao, Z. Catal. Commun. 2007, 8, 1834–1837; (q) Bahrami, K.; Khodaei, M.
M.; Shahbazi, F. Tetrahedron Lett. 2008, 49, 3931–3934; (r) Kangani, C. O.;
Day, B. W. Org. Lett. 2008, 10, 2645–2648; (s) Polo, E. C.; Silva-Filho, L. C.; da
Silva, G. V. L.; Constantino, M. G. Química Nova 2008, 31, 763. U14.
2. Kuhn, F. E.; Santos, A. M.; Abrantes, M. Chem. Rev. 2006, 106, 2455–2475.
3. Jeyakumar, K.; Chand, D. K. Tetrahedron Lett. 2006, 47, 4573–4576.
4. Petrovski, Z.; Valente, A. A.; Pillinger, M.; Dias, A. S.; Rodrigues, S. S.; Romão, C.
C.; Gonçalves, I. S. J. Mol. Catal. A: Chem. 2006, 249, 166–171.
The catalytic activity of MoO2Cl2 was also investigated in the
sulfonylation of a variety of aromatic compounds with p-toluene-
sulfonyl chloride and methanesulfonyl chloride.24 Table 3 shows
that MoO2Cl2 catalyzes the synthesis of aromatic sulfones in mod-
erate to good yields. The reaction of anisole with p-toluenesulfonyl
chloride afforded a mixture of para/ortho-isomers (2:1) in 89%
yield (Table 3, entry 1). However, similar reaction with methane-
sulfonyl chloride gave also a mixture of para/ortho-isomers (1:1)
in low yield (4%).
The sulfonylation of n-butyl phenyl ether and 1,4-dimethoxyben-
zene with p-toluenesulfonyl chloride was performed in bromobenzene
at reflux temperature, and afforded the corresponding sulfones in
66% yield (Table 3, entries 2 and 3).
As shown in Table 3, the alkylbenzenes such as toluene, p-xy-
lene and 1,2,4,5-tetramethylbenzene reacted with p-toluenesulfo-
nyl chloride, leading to the formation of the corresponding
sulfones in 44–55% yields (Table 3, entries 4, 5, and 6).
Mechanistically, we suggest initial activation of the acyl chlo-
ride or the sulfonyl chloride by the coordinatively unsaturated
and strongly acidic Lewis acid MoO2Cl2. This activation can occur
by two different addition modes. One possibility involves the car-
bonyl or sulfonyl group coordination to the molybdenum vacant
sites, or MoO2Cl2 can also activate the C(O)–Cl or S(O)2–Cl bonds
through their addition across Mo@O multiple bond, similar to the
activation of anhydrides reported by Chen.19 In the next step, the
complex formed reacts with the aromatic compound, yielding the
corresponding acylated product and HCl.
In summary, we developed novel Friedel–Crafts acylation and
sulfonylation methods for the synthesis of aromatic ketones and
sulfones in moderate to good yields. We also demonstrated that
MoO2Cl2 catalyzes the formation of C–C and C–S bonds. These re-
sults extend the scope of the use of high valent oxo-molybdenum
complexes as effective catalysts for organic reactions, and open a
new area of catalysis for these complexes, since C–C bond-forming
reactions are the essence of organic synthesis.
5. Holm, R. H. Chem. Rev. 1987, 87, 1401–1449.
6. Hill, R. Chem. Rev. 1996, 96, 2757–2816.
7. Enemark, J. H.; Cooney, J. J. A.; Wang, J.-J.; Holm, R. H. Chem. Rev. 2004, 104,
1175–1200.
8. Kisker, C.; Schindelin, H.; Rees, D. C. Annu. Rev. Biochem. 1997, 66, 233–267.
9. Fernandes, A. C.; Fernandes, R.; Romão, C. C.; Royo, B. Chem. Commun. 2005,
213–214.
10. Costa, P. J.; Romão, C. C.; Fernandes, A. C.; Royo, B.; Reis, P. M.; Calhorda, M. J.
Chem. Eur. J. 2007, 13, 3934–3941.
11. Fernandes, A. C.; Romão, C. C. Tetrahedron Lett. 2005, 46, 8881–8883.
12. Fernandes, A. C.; Romão, C. C. J. Mol. Catal. A: Chem. 2007, 272, 60–63.
13. Fernandes, A. C.; Romão, C. C. J. Mol. Catal. A: Chem. 2006, 253, 96–98.
14. Fernandes, A. C.; Romão, C. C. Tetrahedron 2006, 62, 9650–9654.
15. Fernandes, A. C.; Romão, C. C. Tetrahedron Lett. 2007, 48, 9176–9179.
16. Jeyakumar, K.; Chand, D. K. Synthesis 2008, 807–819.
17. Weng, S.-S.; Lin, Y.-D.; Chen, C.-T. Org. Lett. 2006, 8, 5633–5636.
18. Goswami, S.; Maity, A. C. Tetrahedron Lett. 2008, 49, 3092–3096.
19. Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.;
Liu, C.-Y. J. Org. Chem. 2005, 70, 1188–1197.
20. Sanz, R.; Escribano, J.; Pedrosa, M. R.; Aguado, R.; Arnáiz, F. J. Adv. Synth. Catal.
2007, 349, 713–718.
21. Sanz, R.; Escribano, J.; Fernández, Y.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J.
Synthesis 2004, 1629–1632.
22. Sanz, R.; Escribano, J.; Fernández, Y.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J.
Synlett 2005, 1389–1392.
Further mechanistic studies of these catalytic processes as well
as investigations toward the use of oxo-molybdenum complexes in
other C–C and C–S bond-forming events are now in progress in our
group.
23. Suresh, V.; Suryakiran, N.; Venkateswarlu, Y. Can. J. Chem. 2007, 85, 1037–1040.
24. In a typical experiment, to a solution of MoO2Cl2 (20 mol %) and the aromatic
compound (30 mmol) under inert atmosphere, was added the acyl chloride
(1.0 mmol) or sulfonyl chloride (1.0 mmol). The reaction mixture was stirred at
reflux temperature during 20 h. Upon completion, the reaction mixture was
evaporated and purified by silica gel column chromatography with the
appropriate mixture of n-hexane and ethyl acetate to afford the aromatic
ketones or sulfones, which are all known compounds.
Acknowledgments
This research was supported by FCT through Project PTDC/QUI/
71741/2006. RGN thanks FCT for a postdoctoral Grant (SFRH/BPD/
27215/2006).