Organic Letters
Letter
(2) (a) Davis, F. A. J. Org. Chem. 2006, 71, 8993. (b) Robak, M. T.;
Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600. (c) Morton,
D.; Stockman, R. A. Tetrahedron 2006, 62, 8869. (d) Han, Z.;
Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Pflum, D. A.; Senanayake,
C. H. Tetrahedron Lett. 2003, 44, 4195.
(3) (a) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997,
119, 9913. (b) Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121,
268. (c) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A.
J. Org. Chem. 1999, 64, 1278. (d) Mukade, T.; Dragoli, D. R.; Ellman,
J. A. J. Comb. Chem. 2003, 5, 590.
Among various N-alkyl imines, N-(α-methylbenzyl)imines have
been well explored as chiral electrophiles for an assortment of
reactions.25 The preparation of these N-alkyl imines occurred
under the standard conditions developed for N-sulfinyl imine
formation, except that a 1:1 stoichiometry of aldehyde and
amine was used (Scheme 6).
a
Scheme 6. Scope of N-Alkyl or N-Aryl Aldimine Formation
(4) (a) Kucznierz, R.; Dickhaut, J.; Leinert, H.; Von der Saal, W.
Synth. Commun. 1999, 29, 1617. (b) Guillaume, M.; Cuypers, J.;
Dingenen, J. Org. Process Res. Dev. 2007, 11, 1079. (c) Nugent, T. C. In
Process Chemistry in the Pharmaceutical Industry, Vol. 2; Gadamasetti,
K., Braish, T., Eds.; CRC: Boca Raton, FL, 2008; pp 137−156.
(5) Reeves, J. T.; Tan, Z.; Han, Z. S.; Li, G.; Zhang, Y.; Xu, Y.;
Reeves, D. C.; Gonnella, N. C.; Ma, S.; Lee, H.; Lu, B. Z.; Senanayake,
C. H. Angew. Chem., Int. Ed. 2012, 51, 1400.
(6) Higashibayashi, S.; Tohmiya, H.; Mori, T.; Hashimoto, K.;
Nakata, M. Synlett 2004, 3, 457.
(7) Ardej-Jakubisiak, M.; Kawecki, R.; Swietlinska, A. Tetrahedron:
Asymmetry 2007, 18, 2507.
a
Isolated yields.
(8) Jiang, Z.-Y.; Chan, W. H.; Lee, A. W. M. J. Org. Chem. 2005, 70,
1081.
(9) Huang, Z.; Zhang, M.; Wang, Y.; Qin, Y. Synlett 2005, 8, 1334.
(10) Morales, S.; Guijarro, F. G.; Ruano, J. L. G.; Cid, M. B. J. Am.
Chem. Soc. 2014, 136, 1082.
(11) (a) Starkov, P.; Sheppard, T. D. Org. Biomol. Chem. 2011, 9,
1320. (b) Lanigan, R. M.; Starkov, P.; Sheppard, T. D. J. Org. Chem.
2013, 78, 4512.
(12) Si(OEt)4 has been used to effect condensation of aryl amines
with ketones at high temperatures: Love, B. E.; Ren, J. J. Org. Chem.
1993, 58, 5556.
(13) Byrne, L.; Sola, J.; Boddaert, T.; Marcelli, T.; Adams, R. W.;
Morris, G. A.; Clayden, J. Angew. Chem., Int. Ed. 2014, 53, 151.
(14) Datta, G. K.; Ellman, J. A. J. Org. Chem. 2010, 75, 6283.
(15) (a) Gohain, M. Synlett 2003, 2097. (b) Weinreb, S. M. Top.
Curr. Chem. 1997, 190, 131.
(16) (a) Vishwakarma, L. C.; Stringer, O. D.; Davis, F. A. Org. Synth.
1988, 66, 203. (b) Regiani, T.; Santos, V. G.; Godoi, M. N.; Vaz, B. G.;
Eberlin, M. N.; Coelho, F. Chem. Commun. 2011, 47, 6593.
(17) Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561.
(18) Huisman, M.; ten Have, R.; Van Leusen, A. M. Synth. Commun.
1997, 27, 945.
(19) Adams, R.; Samuels, W. P., Jr. J. Am. Chem. Soc. 1955, 77, 5375.
(20) Jagt, R. B. C.; Toullec, P. Y.; Geerdink, D.; de Vries, J. G.;
Feringa, B. L.; Minnaard, A. J. Angew. Chem., Int. Ed. 2006, 45, 2789.
(21) Weinreb, S. M.; Orr, R. K. Synthesis 2005, 1205.
(22) (a) Boezio, A. A.; Pytkowicz, J.; Cote, A.; Charette, A. B. J. Am.
Chem. Soc. 2003, 125, 14260. (b) Desrosiers, J.-N.; Cote, A.; Boezio, A.
A.; Charette, A. B. Org. Synth. 2006, 83, 5.
(23) (a) Krzyzanowska, B.; Stec, W. J. Synthesis 1978, 521.
(b) Krzyzanowska, B.; Stec, W. J. Synthesis 1982, 270.
(24) Lauzon, C.; Desrosiers, J.-N.; Charette, A. B. J. Org. Chem. 2005,
70, 10579.
The products 39 and 40 were isolated in excellent yields. The
condensation was also amenable to N-aryl imines, as the
reaction of p-anisidine with 4-bromobenzaldehyde furnished
imine 41 in 92% yield.
In summary, B(OCH2CF3)3 was shown to be an effective
and general reagent for the formation of a variety of
synthetically useful imines via condensation of amides or
amines with aldehydes. The reactions proceed at room
temperature. Upon aqueous workup, the reagent B-
(OCH2CF3)3 is hydrolyzed to give aqueous-soluble boric
acid, and no filtration of insoluble reagents or byproducts is
required. The formation of N-sulfinyl ketimines was also
possible at elevated temperature and represents the first
alternative to Ti(OEt)4 for preparation of this type of ketimine.
Notably, B(OCH2CF3)3 is commercially available and may also
be prepared on large scale in one step from boric anhydride and
trifluoroethanol as described by Sheppard and co-workers.11b
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and analytical data (1H and 13C
NMR). This material is available free of charge via the Internet
■
S
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Department of Chemistry and Biochemistry, Ohio State
University, Columbus, OH 43210.
(25) Nugent, T. C.; Marinova, S. M. Synthesis 2013, 153.
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) (a) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev.
2011, 111, 2626. (b) Charette, A. B. In Chiral Amine Synthesis;
Nugent, T. C., Ed.; Wiley VCH: Weinheim, 2010; pp 1−49. (c) Bloch,
R. Chem. Rev. 1998, 98, 1407. (d) Enders, D.; Reinhold, U.
Tetrahedron: Asymmetry 1997, 8, 1895. (e) Volkmann, R. A. In
Comprehensive Organic Synthesis, Vol. 1; Schreiber, S. L., Ed.;
Pergamon: Oxford, 1991; pp 355−396.
D
Org. Lett. XXXX, XXX, XXX−XXX