ORGANIC
LETTERS
2007
Vol. 9, No. 19
3849-3852
Skeletal Diversity through Radical
Cyclization of Tetrahydropyridine
Scaffolds
Sivaraman Dandapani, Mihai Duduta, James S. Panek,* and John A. Porco, Jr.*
Department of Chemistry and Center for Chemical Methodology and Library
DeVelopment, Boston UniVersity, 590 Commonwealth AVenue,
Boston, Massachusetts 02215
panek@bu.edu; porco@bu.edu
Received July 19, 2007
ABSTRACT
Suitably functionalized tetrahydropyridines (methyl pipecolates) have been used as conformationally biased templates for radical cyclizations
to access benzoisoquinuclidines and linearly fused indenopiperidines. Variation of skeletal types is determined by location of a radical-
initiating element.
Diversity generation by systematic variation of substituents
around a given scaffold has remained central to library
synthesis.1 We reasoned that the emerging area of skeletal
diversity2 can potentially benefit by identifying suitable
reactive intermediates that have broad yet predictable
reactivity patterns in complex molecular frameworks. An
underdeveloped approach to skeletal diversity involves design
and synthesis of conformationally biased scaffolds for radical
cyclizations. Generation, reactivity, and stereoselectivity of
free radical intermediates have been well-studied,3 and
application of radical cyclization continues to attract attention
in target-oriented synthesis.3d,f,4 However, applications of
radical chemistry to diversity-oriented synthesis5 and genera-
tion of skeletal diversity remain underdeveloped. In this paper,
we illustrate how the selection of reaction partners for [4
+2 ] annulation assembles pipecolate templates as radical
cyclization precursors while strategically positioning radical-
initiating sites at different locations. A stereroselective
(1) (a) Bunin, B. A.; Ellman, J. A. J. Am. Chem. Soc. 1992, 114, 10997.
(b) Tan, D. S.; Foley, M. A.; Shair, M. D.; Schreiber, S. L. J. Am. Chem.
Soc. 1998, 120, 8565. (c) Pelish, H. E.; Westwood, N. J.; Feng, Y.;
Kirchhausen, T.; Shair, M. D. J. Am. Chem. Soc. 2001, 123, 6740.
(2) (a) For a review on principles of skeletal diversity, see: Schreiber,
S. L.; Burke, M. D. Angew. Chem., Int. Ed. 2004, 43, 46. (b) Micalizio, G.
C.; Schreiber, S. L. Angew. Chem., Int. Ed. 2002, 41, 3272. (c) Micalizio,
G. C.; Schreiber, S. L. Angew. Chem., Int. Ed. 2002, 41, 152. (d) Burke,
M. D.; Berger, E. M.; Schreiber, S. L. Science 2003, 302, 613. (e) Burke,
M. D.; Berger, E. M.; Schreiber, S. L. J. Am. Chem. Soc. 2004, 126, 14095.
(f) Lei, X.; Zaarur, N.; Sherman, M. Y.; Porco, J. A. J. Org. Chem. 2005,
70, 6474. (g) Zacuto, M. J.; Leighton, J. L. Org. Lett. 2005, 7, 5525. (h)
Arya, P.; Joseph, R.; Gan, Z.; Rakic, B. Chem. Biol. 2005, 12, 163. (i)
Oguri, H.; Schreiber, S. L. Org. Lett. 2005, 7, 47. (j) Spiegel, D. A.;
Schroeder, F. C.; Duvall, J. R. ; Schreiber S. L. J. Am. Chem. Soc. 2006,
128, 14766. (k) Chen, Y.; Porco, J. A. Panek, J. S. Org. Lett. 2007, 9,
1529.
(3) (a) Curran, D. P. Synthesis 1988, 6, 417. (b) Curran, D. P. Synthesis
1988, 9, 489. (c) Radicals in Organic Synthesis, Volume 1: Basic Principles,
Renuad, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001. (d) Radicals
in Organic Synthesis, Volume 2: Applications; Renuad, P., Sibi, M P., Eds.;
Wiley-VCH: Weinheim, 2001. (e) Gansauer, A., Ed. Radicals in Synthesis
I: Methods and Mechanisms. In Top. Curr. Chem. 2006, 263, 1-199. (f)
Gansauer, A., Ed. Radicals in Synthesis II: Complex Molecules. In Top.
Curr. Chem. 2006, 264, 1.
(4) (a) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. ReV. 1991, 91,
1237. (b) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem.,
Int. Ed. 2006, 45, 7134.
(5) (a) Ganesan, A.; Sibi, M. P. In Handbook of Combinatorial Chemistry;
Nicolaou, K. C., Hanko, R., Hartwig, W., Eds.; Wiley-VCH: Weinheim,
2002; Vol. 1, p 227. (b) Gabarda, A. E.; Curran, D. P. J. Comb. Chem.
2003, 5, 617. (c) Tangirala, R.; Antony, S.; Agama, K.; Curran, D. P. Synlett
2005, 18, 2843.
10.1021/ol701722z CCC: $37.00
© 2007 American Chemical Society
Published on Web 08/22/2007