Organic Letters
Letter
́
(g) Ricci, P.; Khotavivattana, T.; Pfeifer, L.; Medebielle, M.; Morphy,
J. R.; Gouverneur, V. The dual role of thiourea in the
thiotrifluoromethylation of alkenes. Chem. Sci. 2017, 8, 1195−1199.
(h) Jana, S.; Verma, A.; Kadu, R.; Kumar, S. Visible-light-induced
oxidant and metal-free dehydrogenative cascade trifluoromethylation
and oxidation of 1,6-enynes with water. Chem. Sci. 2017, 8, 6633−
6644. (i) Valverde, E.; Kawamura, S.; Sekine, D.; Sodeoka, M. Metal-
free alkene oxy- and amino-perfluoroalkylations via carbocation
formation by using perfluoro acid anhydrides: unique reactivity
between styrenes and perfluoro diacyl peroxides. Chem. Sci. 2018, 9,
7115−7121. (j) Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X.; Liu, X.-Y.
A Copper Catalyst with a Cinchona-Alkaloid-Based Sulfonamide
Ligand for Asymmetric Radical Oxytrifluoromethylation of Alkenyl
Oximes. Angew. Chem., Int. Ed. 2018, 57, 7668−7672. (k) Cao, J.;
Wang, G.; Gao, L.; Chen, H.; Liu, X.; Cheng, X.; Li, S. H.
Perfluoroalkylative pyridylation of alkenes via 4-cyanopyridine-boryl
radicals. Chem. Sci. 2019, 10, 2767−2772. (l) Zhang, S.; Li, L.; Zhang,
J.; Zhang, J. Q.; Xue, M.; Xu, K. Electrochemical fluoromethylation
triggered lactonizations of alkenes under semi-aqueous conditions.
Chem. Sci. 2019, 10, 3181−3185.
ate Tuning of Redox Potentials and Importance of Halogens in
Donor-Acceptor Cyanoarenes. J. Am. Chem. Soc. 2018, 140, 15353−
5365.
(10) Lonca, G. H.; Ong, D. Y.; Tran, T. M. H.; Tejo, C.; Chiba, S.;
Gagosz, F. Anti-Markovnikov Hydrofunctionalization of Alkenes: Use
of a Benzyl Group as a Traceless Redox-Active Hydrogen Donor.
Angew. Chem., Int. Ed. 2017, 56, 11440−11444.
(11) A related work using alkyl ethers as hydride donors was
reported by Gagosz and Chiba: Gandamana, D. A.; Wang, B.; Tejo,
C.; Bolte, B.; Gagosz, F.; Chiba, S. Alkyl Ethers as Traceless Hydride
Donors in Brønsted Acid Catalyzed Intramolecular Hydrogen Atom
Transfer. Angew. Chem., Int. Ed. 2018, 57, 6181−6185.
(12) Recent examples on distal radical migration strategy: (a) Yu, P.;
Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu,
X.-Y. Enantioselective C-H bond functionalization triggered by radical
trifluoromethylation of unactivated alkene. Angew. Chem., Int. Ed.
2014, 53, 11890−11894. (b) Nguyen, L. Q.; Knowles, R. R. Catalytic
C-N Bond-Forming Reactions Enabled by Proton-Coupled Electron
Transfer Activation of Amide N-H Bonds. ACS Catal. 2016, 6, 2894−
2903. (c) Shu, W.; Merino, E.; Nevado, C. Visible Light Mediated,
Redox Neutral Remote 1,6-Difunctionalizations of Alkenes. ACS
(5) (a) Miao, Z.; Obach, R. S. In Metabolism, Pharmacokinetics and
Toxicity of Functional Groups: Impact of Chemical Building Blocks on
ADMET; Smith, D. A., Ed.; The Royal Society of Chemistry:
Cambridge, 2010; Vol. 10, pp 460−485. (b) Simplício, A. L.; Clancy,
J. M.; Gilmer, J. F. Prodrugs for Amines. Molecules 2008, 13, 519−
547.
Catal. 2018, 8, 6401−6406. (d) Friese, F. W.; Muck-Lichtenfeld, C.;
̈
Studer, A. Remote C−H functionalization using radical translocating
arylating groups. Nat. Commun. 2018, 9, 2808. (e) Stateman, L. M.;
Wappes, E. A.; Nakafuku, K. M.; Edwards, K. M.; Nagib, D. A.
Catalytic β C-H amination via an imidate radical relay. Chem. Sci.
2019, 10, 2693−2699. (f) Wu, S.; Wu, X.; Wang, D.; Zhu, C.
Regioselective Vinylation of Remote Unactivated C(sp3)-H Bonds:
Access to Complex Fluoroalkylated Alkenes. Angew. Chem., Int. Ed.
2019, 58, 1499−1503.
(6) For selected recent reviews, see: (a) Prier, C. K.; Rankic, D. A.;
MacMillan, D. W. C. Visible Light Photoredox Catalysis with
Transition Metal Complexes: Applications in Organic Synthesis.
Chem. Rev. 2013, 113, 5322−5363. (b) Schultz, D. M.; Yoon, T. P.
Solar Synthesis: Prospects in Visible Light Photocatalysis. Science
2014, 343, 1239176. (c) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J.
Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis
and Functionalization: Reaction Design and Beyond. Acc. Chem. Res.
2016, 49, 1911−1923. (d) Romero, N. A.; Nicewicz, D. A. Organic
Photoredox Catalysis. Chem. Rev. 2016, 116, 10075−10166.
(13) Recent reviews on radical fluoroalkylation reactions:
(a) Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Controlled
Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis.
Acc. Chem. Res. 2016, 49, 2284−2294. (b) Barata-Vallejo, S.; Cooke,
M. V.; Postigo, A. Radical Fluoroalkylation Reactions. ACS Catal.
2018, 8, 7287−7307. Recent examples: (c) Wang, Y.; Wang, J.; Li,
G.-X.; He, G.; Chen, G. Halogen-Bond-Promoted Photoactivation of
Perfluoroalkyl Iodides: A Photochemical Protocol for Perfluoroalky-
lation Reactions. Org. Lett. 2017, 19, 1442−1445. (d) Tang, X.;
Studer, A. α-Perfluoroalkyl-β-alkynylation of alkenes via radical
alkynyl migration. Chem. Sci. 2017, 8, 6888−6892. (e) Beniazza, R.;
̈
̈
(e) Karkas, M. D. Photochemical Generation of Nitrogen-Centered
Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Develop-
ments and Catalytic Applications. ACS Catal. 2017, 7, 4999−5022.
́
(f) Wang, C.-S.; Dixneuf, P. H.; Soule, J.-F. Photoredox Catalysis for
Building C-C Bonds from C(sp2)-H Bonds. Chem. Rev. 2018, 118,
́
̀
Remisse, L.; Jardel, D.; Lastecoueres, D.; Vincent, J.-M. Light-
mediated iodoperfluoroalkylation of alkenes/alkynes catalyzed by
chloride ions: role of halogen bonding. Chem. Commun. 2018, 54,
7451−7454. (f) Wu, G.; Wanggelin, A. J. v. Stereoselective cobalt-
catalyzed halofluoroalkylation of alkynes. Chem. Sci. 2018, 9, 1795−
1802.
̈
7532−7585. (g) Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B. Visible-
Light Photocatalysis: Does It Make a Difference in Organic Synthesis?
Angew. Chem., Int. Ed. 2018, 57, 10034−10072. (h) Zhou, Q.-Q.;
Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Visible-Light-Induced Organic
Photochemical Reactions through Energy-Transfer Pathways. Angew.
Chem., Int. Ed. 2019, 58, 1586−1604.
(14) Gant, T. G. Using Deuterium in Drug Discovery: Leaving the
Label in the Drug. J. Med. Chem. 2014, 57, 3595−3611.
(15) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Catalytic
hydrotrifluoromethylation of styrenes and unactivated aliphatic
alkenes via an organic photoredox system. Chem. Sci. 2013, 4,
3160−3165.
(16) Zhu, L.; Wang, L.-S.; Li, B.; Fu, B.; Zhang, C.-P.; Li, W.
Operationally simple hydrotrifluoromethylation of alkenes with
sodium triflinate enabled by Ir photoredox catalysis. Chem. Commun.
2016, 52, 6371−6374.
(7) For selected recent examples using 4CzIPN as the photocatalyst,
see: (a) Luo, J.; Zhang, J. Donor−Acceptor Fluorophores for Visible-
Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic
C(sp3)−C(sp2) Cross-Coupling. ACS Catal. 2016, 6, 873−877.
(b) Huang, H.; Yu, C.; Zhang, Y.; Zhang, Y.; Mariano, P. S.; Wang,
W. Chemo- and Regioselective Organo-Photoredox Catalyzed
Hydroformylation of Styrenes via a Radical Pathway. J. Am. Chem.
Soc. 2017, 139, 9799−9802. (c) Meng, Q.-Y.; Wang, S.; Huff, G. S.;
̈
Konig, B. Ligand-Controlled Regioselective Hydrocarboxylation of
Styrenes with CO2 by Combining Visible Light and Nickel Catalysis.
J. Am. Chem. Soc. 2018, 140, 3198−3201. (d) Hou, J.; Ee, A.; Cao, H.;
Ong, H.-W.; Xu, J.-H.; Wu, J. Visible-Light-Mediated Metal-Free
Difunctionalization of Alkenes with CO2 and Silanes or C(sp3)−H
Alkanes. Angew. Chem., Int. Ed. 2018, 57, 17220−17224.
(8) Charpentier, J.; Fruh, N.; Togni, A. Electrophilic Trifluor-
̈
omethylation by Use of Hypervalent Iodine Reagents. Chem. Rev.
2015, 115, 650−682.
(9) (a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C.
Highly efficient organic light-emitting diodes from delayed
fluorescence. Nature 2012, 492, 234−240. (b) Speckmeier, E.;
Fischer, T. G.; Zeitler, K. A Toolbox Approach to Construct Broadly
Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliber-
E
Org. Lett. XXXX, XXX, XXX−XXX