Journal of the American Chemical Society
ARTICLE
(18) Leiston-Belanger, J. M.; Russell, T. P.; Drockenmuller, E.;
Hawker, C. J. Macromolecules 2005, 38, 7676–7683.
(19) Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.;
Gupta, N.; Moon, B.; Hawker, C. J. Nat. Chem. 2010, 2, 207–212.
(20) Kakwere, H.; Perrier, S. J. Am. Chem. Soc. 2009, 131,
1889–1895.
(49) Golas, P. L.; Matyjaszewski, K. Chem. Soc. Rev. 2010, 39,
1338–1354.
(50) Schmidt, V. K. J.; Fechler, N.; Falkenhagen, J.; Lutz, J.-F. Nat.
Chem. 2011, 3, 234–238.
(51) Oria, L.; Aguado, R.; Pomposo, J. A.; Comenero, J. Adv. Mater.
2010, 22, 3038–3041.
(21) McCormick, C. L.; Sumerlin, B. S.; Lokitz, B. S.; Stempka, J. E.
Soft Matter 2008, 4, 1760–1773.
(22) Roy, D.; Cambre, J. N.; Sumerlin, B. S. Prog. Polym. Sci. 2010,
35, 278–301.
(52) de Luzuriaga, A. R.; Ormategui, N.; Grande, H. J.; Odriozola, I.;
Pomposo, J. A.; Loinaz, I. Macromol. Rapid Commun. 2008, 29,
1156–1160.
(53) Due to the differences in reactivity of trimethylsilylpropargylox-
ystyrene, styrene, and vinylbenzyl azide, a slight gradient incorporation
rather than true random incorporation might occur through the conven-
tional radical polymerization employed. Nevertheless, because of the very
low incorporation of functional monomers, any effect of such a slight
gradient on the bulk cross-linking studies should be very minimal.
(54) The presence of three new signals indicates the formation of
two separate triazole isomers (having up to four possible new signals)
where two of the individual resonances are overlapping yielding three
new signals. No direct measure of relative ratio of the two isomers was
obtained using the cross-polarization technique because signal intensity
is dependent upon spin polarization transfer, a feature that prevents
normal integral analysis; moreover, overlap of the growing triazole reso-
nances with the backbone aromatic resonances further complicates the
interpretation.
(55) A larger temperature range would allow a more comprehensive
assessment of the influence of Tg upon the initial rate kinetics of cross-
linking. The linear Arrhenius relationship could be explained because the
cross-linking reaction always seems to be occurring below the Tg of the
final cross-linked material(see Supporting Information, Figure S4).
(56) Enns, J. B.; Gillham, J. K. J. Appl. Polym. Sci. 1983, 28,
2567–2591.
(57) Wisanrakkit, G.; Gillham, J. K. J. Appl. Polym. Sci. 1990, 41,
2885–2929.
(58) Paeng, K.; Swallen, S. F.; Ediger, M. D. J. Am. Chem. Soc. 2011,
133, 8444–8447.
(59) The Tg of uncrosslinked polymer S1 is comparable (97 °C) to
that of uncrosslinked polymer 1 (104 °C); it is therefore most likely that
the differences in cross-linking efficiency arise from the reaction rate dif-
ferences of terminal versus protected alkynes rather than from mobility
differences within the polymer melt.
(23) Spruell, J. M.; Hawker, C. J. Chem. Sci. 2011, 2, 18–26.
(24) Du, J.; O’Reilly, R. K. Soft Matter 2009, 5, 3544–3561.
(25) Drockenmuller, E.; Li, L. Y. T.; Ryu, D. Y.; Harth, E.; Russell,
T. P.; Kim, H. C.; Hawker, C. J. J. Polym. Sci. A, Polym. Chem. 2005,
43, 1028–1037.
(26) Leibfarth, F. A.; Schneider, Y.; Lynd, N. A.; Schultz, A.; Moon,
B.; Kramer, E. J.; Bazan, G. C.; Hawker, C. J. J. Am. Chem. Soc. 2010,
132, 14706–14709.
(27) Joralemon, M. J.; O’Reilly, R. K.; Hawker, C. J.; Wooley, K. L.
J. Am. Chem. Soc. 2005, 127, 16892–16899.
(28) Gupta, N.; Lin, B. F.; Campos, L. M.; Dimitriou, M. D.; Hikita,
S. T.; Treat, N. D.; Tirrell, M. V.; Clegg, D. O.; Kramer, E. J.; Hawker,
C. J. Nat. Chem. 2010, 2, 138–145.
(29) Rodionov, V.; Gao, H.; Scroggins, S.; Unruh, D. A.; Avestro, A.;
Frꢀechꢀet, J. M. J. J. Am. Chem. Soc. 2010, 132, 2570–2572.
(30) Christman, K. L.; Schnopf, E.; Broyer, R. M.; Li, R. C.; Chen, Y.;
Maynard, H. D. J. Am. Chem. Soc. 2009, 131, 521–527.
(31) Subramani, C.; Cengiz, N.; Saha, K.; Gevrek, T. N.; Yu, X.;
Jeong, Y.; Bajaj, A.; Sanyal, A.; Rotello, V. M. Adv. Mater. 2011, 23,
3165–3169.
(32) Salaita, K.; Wang, Y. H.; Mirkin, C. A. Nat. Nanotechnol. 2007,
2, 145–155.
(33) Paxton, W. F.; Spruell, J. M.; Stoddart, J. F. J. Am. Chem. Soc.
2009, 131, 6692–6694.
(34) Spruell, J. M.; Sheriff, B. A.; Rozkiewicz, D. I.; Dichtel, W. R.;
Rohde, R. D.; Reinhoudt, D. N.; Stoddart, J. F.; Heath, J. R. Angew.
Chem., Int. Ed. 2008, 47, 9927–9932.
(35) Hensarling, R. M.; Doughty, V. A.; Chan, J. W.; Patton, D. L.
J. Am. Chem. Soc. 2009, 131, 14673–14675.
(36) Deng, X.; Friedmann, C.; Lahann, J. Angew. Chem., Int. Ed.
2011, 50, 6522–6526.
(37) Seo, H.; Choi, I.; Lee, J.; Kim, S.; Kim, D.-E.; Kim, S. K.; Yeo,
(60) Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.;
Wang, Q. Org. Lett. 2004, 6, 4603–4606.
W.-S. Chem.—Eur. J. 2011, 17, 5804–5807.
(61) Langhals, H.; Obermeier, A. Eur. J. Org. Chem. 2008, 36,
6144–6151.
(62) Weaker fluorescence signal intensity was observed when the
thermal microcontact printing was performed at temperatures as low as
70 °C for 30 min, while no discernible signal was observed for printing
performed at lower temperatures.
(38) Orski, S. V.; Poloukhtine, A. A.; Arumugam, S.; Mao, L.; Popik,
V. V.; Locklin, J. J. Am. Chem. Soc. 2010, 132, 11024–11026.
(39) Im, S. G.; Bong, K. W.; Kim, B.; Baxamusa, S. H.; Hammond,
P. T.; Doyle, P. S.; Gleason, K. K. J. Am. Chem. Soc. 2008, 130,
14424–14425.
(40) Gonzalez-Campo, A.; Hsu, S.; Puig, L.; Huskens, J.; Reinhoudt,
D. N.; Velders, A. H. J. Am. Chem. Soc. 2010, 132, 11434–11436.
(41) Canalle, L.; Van Berkel, S.; De Haan, L.; van Hest, J. Adv. Func.
Mater. 2009, 19, 3464–3470.
(63) Fillion, E.; Fishlock, D. Tetrahedron 2009, 65, 6682–6695.
(64) Dumas, A. M.; Fillion, E. Acc. Chem. Res. 2009, 43, 440–454.
(42) Li, Y.; Niehaus, J. C.; Chen, Y.; Fuchs, H.; Studer, A.; Galla,
H.-J.; Chi, L. Soft Matter 2011, 7, 861–863.
(43) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 633–645.
(44) Gonzaga, F. G.; Yu, G.; Brook, M. Macromolecules 2009,
42, 9220–9224.
(45) Clemens, R. J.; Witzeman, J. S. J. Am. Chem. Soc. 1989, 111,
2186–2193.
(46) Fleischmann, S.; Komber, H.; Voit, B. Macromolecules 2008,
41, 5255–5264.
(47) Mansfeld, U.; Pietsch, C.; Hoogenboom, R.; Becer, C. R.;
Schubert, U. S. Polym. Chem. 2010, 1, 1560–1598.
(48) (a) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200–1205.
(b) Thibault, R. J.; Takizawa, K.; Lowenheilm, P.; Helms, B.; Mynar, J.
L.; Frechet, J. M. J.; Hawker, C. J. J. Am. Chem. Soc. 2006,
128, 12084–12085. (c) Kade, M. J.; Burke, D. J.; Hawker, C. J. J. Polym.
Sci., Part A: Polym. Chem. 2010, 48, 743–750.
16706
dx.doi.org/10.1021/ja207635f |J. Am. Chem. Soc. 2011, 133, 16698–16706