ORGANIC
LETTERS
2005
Vol. 7, No. 8
1665-1667
Synthesis of Furan-Bridged
10-Membered Rings through
[8
+ 2]-Cycloaddition of Dienylfurans
and Acetylenic Esters
Lei Zhang, Yu Wang, Clare Buckingham, and James W. Herndon*
New Mexico State UniVersity, Department of Chemistry and Biochemistry, MSC 3C,
Las Cruces, New Mexico 88003
Received February 25, 2005
ABSTRACT
The coupling of various dienylfurans with dimethyl acetylenedicarboxylate (DMAD) has been examined. In most cases this reaction proceeds
via [8 2]-cycloaddition to afford furan-bridged 10-membered ring systems as a single diastereomer. Dienylfuran intermediates were generated
+
using either a chromium carbene-based method or aldol-based methods. Reaction of [8
selectively at the enol ether alkene.
+ 2]-cycloadducts with electrophilic reagents occurred
Furan-bridged 10-membered ring systems are commonly
found in a variety of coral-derived cytotoxic compounds.1
The most potent anticancer agent possessing this substructure
is eleutherobin (1, Scheme 1), which is active against a
variety of cancer cell lines at nanomolar concentrations and
operates through stabilization of microtubules. Eleutherobin
is obtained in low yield from a rare coral species,2 and two
elegant but lengthy total syntheses of eleutherobin have been
reported.3 Much of the drug development effort has centered
on evaluation of the minimal pharmacophore requirements
through examination of analogues4 and the preparation of
simpler analogues through organic synthesis.5 A recently
reported reaction, the [8 + 2]-cycloaddition reaction6 between
dienylisobenzofuran derivatives (e.g., 4) and dimethyl acety-
(3) (a) Nicolaou, K. C.; Ohshima, T.; Hosokawa, S.; Van Delft, F. L.;
Vourloumis, D.; Xu, J. Y.; Pfefferkorn, J.; Kim, S. J. Am. Chem. Soc. 1998,
120, 8674-8680. (b) Chen, X. T.; Bhattacharya, S. K.; Zhou, B.; Gutteridge,
C. E.; Pettus, T. R. R.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121,
6563-6579. (c) A formal total synthesis has also been reported. Ritter, N.;
Metz, P. Synlett 2003, 2422-2424.
(4) (a) McDaid, H. M.; Bhattacharya, S. K.; Chen, X. T.; He, L.; Shen,
H. J.; Gutteridge, C. E.; Horwitz, S. B.; Danishefsky, S. J. Cancer
Chemother. Pharmacol. 1999, 44, 131-137. (b) Cinel, B.; Roberge, M.;
Behrisch, H.; van Ofwegen, L.; Castro, C. B.; Andersen, R. J. Org. Lett.
2000, 2, 257-260. (c) Roberge, M.; Cinel, B.; Anderson, H. J.; Lim, L.;
Jiang, X.; Xu, L.; Bigg, C. M.; Kelly, M. T.; Andersen, R. J. Cancer Res.
2000, 60, 5052-5058. (d) Britton, R.; Dilip de Silva, E.; Bigg, C. M.;
McHardy, L. M.; Roberge, M.; Andersen, R. J. J. Am. Chem. Soc. 2001,
123, 8632-8633. (e) Diederichsen, U. Org. Synth. Highlights V 2003, 317-
325.
(1) For a review, see: Bernardelli, P.; Paquette, L. A. Heterocycles 1998,
49, 531-556.
(2) (a) The yield is 0.01% dry weight. Lindel, T.; Jensen, P. R.; Fenical,
W.; Casazza, A. M.; Carboni, J.; Fairchild, C. R. J. Am. Chem. Soc. 1997,
119, 8744-8745. (b) Production of eleutherobin through aquaculture has
recently been reported. Taglialatela-Scafati, O.; Deo-Jangra, U.; Campbell,
M.; Roberge, M.; Andersen, R. J. Org. Lett. 2002, 4, 4085-4088.
(5) (a) Chandrasekhar, S.; Jagadeshwar, V.; Narsihmulu, C.; Sarangapani,
M.; Krishna, D. R.; Vidyasagar, J.; Vijay, D.; Sastry, G. N. Bioorg. Med.
Chem. Lett. 2004, 14, 3687-3689. (b) Caggiano, L.; Castoldi, D.; Beumer,
R.; Bayon, P.; Telser, J.; Gennari, C. Tetrahedron Lett. 2003, 44, 7913-
7919. (c) Beumer, R.; Bayon, P.; Bugada, P.; Ducki, S.; Mongelli, N.; Sirtori,
F. R.; Telser, J.; Gennari, C. Tetrahedron Lett. 2003, 44, 681-684.
10.1021/ol050416n CCC: $30.25
© 2005 American Chemical Society
Published on Web 03/18/2005