Paper
Organic & Biomolecular Chemistry
stirred at 70 °C for 16 h. The organic solvent was evaporated
under reduced pressure and the residue partitioned between
NaOH(aq.) (10%, 50 mL) and CH2Cl2 (2 × 50 mL). The organic
phase was dried (MgSO4) and concentrated. The residue was
purified chromatographically (NH-silica gel; EtOAc/hexanes,
3 : 7) to afford 19 (27.3 mg, 6%), 14 (41.1 mg, 19%), and 16
(3.6 mg, 1%), each as a colorless oil; data for 19: 1H NMR
(400 MHz, CDCl3): δ = 2.05 (s, 6H), 2.16 (s, 6H), 2.92–3.02 (m,
8H), 3.07–3.15 (m, 8H), 3.19 (s, 4H), 3.26–3.34 (m, 8H), 3.36 (s,
4H), 3.39 (s, 4H), 3.44 (s, 4H), 4.17 (s, 4H), 4.23 (s, 4H), 6.92 (s,
1H), 6.98 (d, J = 8.0 Hz, 4H), 7.02 (d, J = 8.0 Hz, 4H), 7.07–7.15
(m, 7H), 7.17 (s, 1H), 7.20 (d, J = 8.0 Hz, 4H), 7.23–7.28 (m,
3H); 13C NMR (100 MHz, CDCl3): δ = 42.3, 42.6, 60.0, 61.4,
61.7, 62.0, 68.5, 68.8, 69.8, 69.8, 70.3, 72.7, 73.1, 126.6, 127.3,
127.7, 127.9, 128.1, 128.4, 128.6, 129.0, 129.1, 129.4, 136.3,
137.2, 137.6, 138.3, 139.3 (two signals were missing, possibly
due to signal overlap); HR-MS (ESI): calcd for [M + H]+
304, 1308; (b) S.-L. Huang, Y.-J. Lin, Z.-H. Li and G.-X. Jin,
Angew. Chem., Int. Ed., 2014, 53, 11218; (c) F. L. Thorp-
Greenwood, A. N. Kulak and M. J. Hardie, Nat. Chem.,
2015, 7, 526.
6 D. A. Leigh, R. G. Pritchard and A. J. Stephens, Nat. Chem.,
2014, 6, 978.
7 (a) G. W. Gokel, Crown Ethers and Cryptands, The Royal
Society of Chemistry, Cambridge, 1991; (b) Crown Ethers
and Analogous Compounds, ed. M. Hiraoka, Elsevier,
Amsterdam, 1992; (c) M. C. T. Fyfe and J. F. Stoddart, in
Advances in Supramolecular Chemistry, ed. G. W. Gokel, JAI,
London, 1999, vol. 5, pp. 1–53.
8 (a) G. Kaiser, T. Jarrosson, S. Otto, Y.-F. Ng, A. D. Bond and
J. K. M. Sanders, Angew. Chem., Int. Ed., 2004, 43, 1959;
(b) S. A. Vignon, T. Jarrosson, T. Iijima, H.-R. Tseng,
J. K. M. Sanders and J. F. Stoddart, J. Am. Chem. Soc., 2004,
126, 9884; (c) Y.-H. Lin, C.-C. Lai, Y.-H. Liu, S.-M. Peng and
S.-H. Chiu, Angew. Chem., Int. Ed., 2013, 52, 10231;
(d) K.-D. Wu, Y.-H. Lin, C.-C. Lai and S.-H. Chiu, Org. Lett.,
2014, 16, 1068; (e) T.-H. Ho, C.-C. Lai, Y.-H. Liu, S.-M. Peng
+
C64H85N4O8 : m/z 1037.6367; found 1037.6322.
Acknowledgements
and S.-H. Chiu, Chem.
– Eur. J., 2014, 20, 4563;
(f) Y.-H. Lin, C.-C. Lai and S.-H. Chiu, Org. Biomol.
Chem., 2014, 12, 2907; (g) Y.-W. Wu, P.-N. Chen,
C.-F. Chang, C.-C. Lai and S.-H. Chiu, Org. Lett., 2015, 17,
2158; (h) Y.-W. Wu, S.-T. Tung, C.-C. Lai, Y.-H. Liu,
S.-M. Peng and S.-H. Chiu, Angew. Chem., Int. Ed., 2015, 54,
11745.
We thank the National Science Council (Taiwan) (MOST-104-
2826-M-002-012) and National Taiwan University (NTU-104-
R890913) for financial support.
Notes and references
9 S.-T. Tung, C.-C. Lai, Y.-H. Liu, S.-M. Peng and S.-H. Chiu,
Angew. Chem., Int. Ed., 2013, 52, 13269.
1 For recent reviews, see: (a) M. E. Belowich and
J. F. Stoddart, Chem. Soc. Rev., 2012, 41, 2003; 10 For chemosensors that can differentiate between Na+ and
(b) J.-C. Chambron and J.-P. Sauvage, New J. Chem., 2013,
37, 49; (c) S. P. Black, J. K. M. Sanders and
A. R. Stefankiewicz, Chem. Soc. Rev., 2014, 43, 1861;
(d) V. Marti-Centelles, M. D. Pandey, M. I. Burguete and
S. V. Luis, Chem. Rev., 2015, 115, 8736.
2 (a) M. C. Thompson and D. H. Busch, J. Am. Chem. Soc.,
1964, 86, 213; (b) N. F. Curtis, Coord. Chem. Rev., 1968, 3, 3;
(c) O. Costisor and W. Linert, Metal Mediated Template Syn-
thesis of Ligands, World Scientific Publishing, Singapore, 2004.
3 For reviews, see: (a) B. Champin, P. Mobian and
J.-P. Sauvage, Chem. Soc. Rev., 2007, 36, 358; (b) J. E. Beves,
B. A. Blight, C. J. Campbell, D. A. Leigh and R. T. McBurney,
Angew. Chem., Int. Ed., 2011, 50, 9260.
K+ ions, see: (a) A. P. de Silva, H. Q. N. Gunaratne,
T. Gunnlaugsson and M. Nieuwenhuizen, Chem. Commun.,
1996, 1967; (b) T. Jin, Chem. Commun., 1999, 2491;
(c) F. He, Y. Tang, S. Wang, Y. Li and D. Zhu, J. Am. Chem.
Soc., 2005, 127, 12343; (d) M. Barush, W. Qin,
R. A. L. Vallée, D. Beljonne, T. Rohand, W. Dehaen and
N. Boens, Org. Lett., 2005, 7, 4377; (e) S.-Y. Hsueh,
C.-C. Lai, Y.-H. Liu, S.-M. Peng and S.-H. Chiu, Angew.
Chem., Int. Ed., 2007, 46, 2013; (f) X. Wang, J. Zhu and
D. B. Smithrud, J. Org. Chem., 2010, 75, 3358; (g) X. Zhou,
F. Su, Y. Tian, C. Youngbull, R. H. Johnson and
D. R. Meldrum, J. Am. Chem. Soc., 2011, 133, 18530;
(h) X. Kong, F. Su, L. Zhang, J. Yaron, F. Lee, Z. Shi, Y. Tian
and D. R. Meldrum, Angew. Chem., Int. Ed., 2015, 54,
12053.
4 (a) M. Meyer, A.-M. Albrecht-Gary, C. O. Dietrich-Buchecker
and J.-P. Sauvage, J. Am. Chem. Soc., 1997, 119, 4599;
(b) J. Brueggemann, S. Bitter, S. Mueller, W. M. Mueller, 11 We methylated the [2]catenanes to avoid their slow
U. Mueller, N. M. Maier, W. Lindner and F. Voegtle, Angew.
Chem., Int. Ed., 2006, 46, 254; (c) J. Guo, P. C. Mayers,
G. A. Breault and C. A. Hunter, Nat. Chem., 2010, 2, 218;
(d) J.-P. Sauvage and D. B. Amabilino, Top. Curr. Chem.,
2012, 323, 107.
decomposition in CDCl3; similar tertiary amino derivatives
have been found to be much more robust (ref. 8h). For
other examples of this methylation method, see:
(a) K. Nakazono, S. Kuwata and T. Takata, Tetrahedron Lett.,
2008, 49, 2397; (b) S. Suzuki, K. Nakazono and T. Takata,
Org. Lett., 2010, 12, 712; (c) T.-W. Lu, C.-F. Chang, C.-C. Lai
and S.-H. Chiu, Org. Lett., 2013, 15, 5742.
5 (a) K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu,
G. W. V. Cave, J. L. Atwood and J. F. Stoddart, Science, 2004,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015