Molecules 2021, 26, 3033
12 of 13
Author Contributions: Conceptualization, S.-H.J. and K.L.; methodology, S.-H.J.; software, J.K.;
validation, S.-H.J. and K.L.; formal analysis, S.-H.J. and K.L.; investigation, H.-Y.H. and J.-W.C.;
resources, K.L.; data curation, S.-H.J. and H.-Y.H.; writing—original draft preparation, S.-H.J. and H.-
Y.H.; writing—review and editing, K.L.; visualization, S.-H.J. and H.-Y.H.; supervision, K.L.; project
administration, K.L.; funding acquisition, K.L. All authors have read and agreed to the published
version of the manuscript.
Funding: This work was supported by a 2017 Research Grant from Kangwon National University
(No. 520170418).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data presented in this study are available on request from the
corresponding author.
Conflicts of Interest: The authors declare that they have no conflict of interest.
Sample Availability: Samples of the all compounds are available from the authors.
References
1.
2.
3.
Martens, S.; Mithofer, A. Flavones and flavone synthases. Phytochemistry 2005, 66, 2399–2407. [CrossRef]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [CrossRef]
Cazarolli, L.H.; Zanatta, L.; Alberton, E.H.; Figueiredo, M.S.; Folador, P.; Damazio, R.G.; Pizzolatti, M.G.; Silva, F.R. Flavonoids:
Prospective drug candidates. Mini Rev. Med. Chem. 2008, 8, 1429–1440. [CrossRef] [PubMed]
4.
5.
6.
7.
8.
9.
Cushnie, T.P.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents
Hyun, J.; Woo, Y.; Hwang, D.S.; Jo, G.; Eom, S.; Lee, Y.; Park, J.C.; Lim, Y. Relationships between structures of hydroxyflavones
and their antioxidative effects. Bioorg. Med. Chem. Lett. 2010, 20, 5510–5513. [CrossRef]
Fu, T.; Chai, B.; Shi, Y.; Dang, Y.; Ye, X. Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes
by regulating PKA/CREB and P38/MAPK signaling pathways. J. Dermatol. Sci. 2019, 94, 213–219. [CrossRef]
Wang, L.; Gan, Z.F.; Guo, D.; Xia, H.L.; Patrice, F.T.; Hafez, M.E.; Li, D.W. Electrochemistry-Regulated Recyclable SERS Sensor for
Sensitive and Selective Detection of Tyrosinase Activity. Anal. Chem. 2019, 91, 6507–6513. [CrossRef] [PubMed]
Jung, S.H.; Kim, J.; Eum, J.; Choe, J.W.; Kim, H.H.; Kee, Y.; Lee, K. Velutin, an Aglycone Extracted from Korean Mistletoe, with
Improved Inhibitory Activity against Melanin Biosynthesis. Molecules 2019, 24, 2549. [CrossRef]
Alam, M.B.; Bajpai, V.K.; Lee, J.; Zhao, P.; Byeon, J.H.; Ra, J.S.; Majumder, R.; Lee, J.S.; Yoon, J.I.; Rather, I.A.; et al. Inhibition
of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the
proteasomal degradation of tyrosinase. Sci. Rep. 2017, 7, 45858. [CrossRef]
10. Rose, P.T. Pigmentary disorders. Med. Clin. North Am. 2009, 93, 1225–1239. [CrossRef]
11. Lee, S.Y.; Baek, N.; Nam, T.G. Natural, semisynthetic and synthetic tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2016, 31,
12. Okombi, S.; Rival, D.; Bonnet, S.; Mariotte, A.M.; Perrier, E.; Boumendjel, A. Discovery of benzylidenebenzofuran-3(2H)-one
(aurones) as inhibitors of tyrosinase derived from human melanocytes. J. Med. Chem. 2006, 49, 329–333. [CrossRef] [PubMed]
13. Lim, J.; Nam, S.; Jeong, J.H.; Kim, M.J.; Yang, Y.; Lee, M.S.; Lee, H.G.; Ryu, J.H.; Lim, J.S. Kazinol U inhibits melanogenesis
through the inhibition of tyrosinase-related proteins via AMP kinase activation. Br. J. Pharmacol. 2019, 176, 737–750. [CrossRef]
14. Momtaz, S.; Lall, N.; Basson, A. Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts. South Afr. J.
15. Xie, C.H.; Kang, J.; Li, Z.M.; Schauss, A.G.; Badger, T.M.; Nagarajan, S.; Wu, T.; Wu, X.L. The acai flavonoid velutin is a potent
anti-inflammatory agent: Blockade of LPS-mediated TNF-alpha and IL-6 production through inhibiting NF-kappa B activation
and MAPK pathway. J. Nutr. Biochem. 2012, 23, 1184–1191. [CrossRef]
16. Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A.G.; Wu, T.; Wu, X. Flavonoids from acai (Euterpe oleracea Mart.) pulp and their
antioxidant and anti-inflammatory activities. Food Chem. 2011, 128, 152–157. [CrossRef]
17. Yamasaki, K.; Hishiki, R.; Kato, E.; Kawabata, J. Study of Kaempferol Glycoside as an Insulin Mimic Reveals Glycon To Be the
Key Active Structure. ACS Med. Chem. Lett. 2011, 2, 17–21. [CrossRef]
18. Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M.L.; Piro, O.E.; Castellano, E.E.; Vidal, A.; Azqueta, A.; Monge, A.; De Cerain,
A.L.; et al. Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure-activity
relationships. Bioorg. Med. Chem. 2007, 15, 3356–3367. [CrossRef] [PubMed]
19. Grace, M.H.; Wilsonb, G.R.; Kandil, F.E.; Dimitriadis, E.; Coates, R.M. Characteristic flavonoids from Acacia burkittii and A.
acuminata heartwoods and their differential cytotoxicity to normal and leukemia cells. Nat. Prod. Commun. 2009, 4, 69–76.
20. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS
radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]