Communications
equivalents of D2O afforded [4-D]-8b, as judged by 1H NMR
Tetrahedron 2006, 62, 9301; c) X.-L. Hou, Z. Yang, K.-S. Yeung,
H. N. C. Wong in Progress in Heterocyclic Chemistry, Vol. 17
(Eds.: G. W. Gribble, J. A. Joule), Elsevier, Oxford, 2005,
pp. 142– 171; d) X.-L. Hou, Z. Yang, K.-S. Yeung, H. N. C.
Wong in Progress in Heterocyclic Chemistry, Vol. 16 (Eds.: G. W.
Gribble, J. A. Joule), Elsevier, Oxford, 2004, pp. 156 – 197;
e) The Chemistry of Heterocycles: Structure, Reactions, Synthe-
ses, and Applications (Eds.: T. Eicher, J. S. Hauptmann), Wiley-
VCH, Weinheim, 2003; f) Special issue: Tetrahedron 2002, 58,
1779 – 2040; g) G. Rousseau, F. Homsi, Chem. Soc. Rev. 1997, 26,
453 – 461; h) H. Heaney, J. S. Ahn in Comprehensive Hetero-
cyclic Chemistry II, Vol. 2 (Ed.: C. W. Bird), Elsevier, 1995,
pp. 297 – 350; i) U. Koert, Synthesis 1995, 115; j) J.-C. Harmange,
B. Figadꢀre, Tetrahedron: Asymmetry 1993, 4, 1711; k) B. M.
Fraga, Nat. Prod. Rep. 1992, 9, 217; l) A. T. Merrit, S. V. Ley, Nat.
Prod. Rep. 1992, 9, 243; m) F. M. Dean in Advances in Hetero-
cyclic Chemistry, Vol. 30 (Ed.: A. R. Katritzky), Academic Press,
New York, 1982, pp. 167 – 238.
spectroscopy (see Supporting Information), suggests that
deuterolysis of the carbon–gold bond in species 11 has
occurred. It may be inferred that different steric effects in
the organometallic species 10 and 11 may be responsible for
the different reactivity preference, by stabilizing one of the
intermediates rather than the other. In the presence of a
MOM group, 5-exo cyclization falters. Probably, 5-exo oxy-
auration via 10 is restricted by the steric hindrance between
the (methoxymethyl)oxy group and the substituents at the
quaternary stereocenter.
Scheme 7 outlines a mechanistic hypothesis for the
achievement of compounds 5. Initial PdII coordination gave
an allene–palladium complex 12. Species 12 underwent an
[2] For general and comprehensive reviews, see: a) S. Ma, Chem.
Rev. 2005, 105, 2829; b) Modern Allene Chemistry (Eds.: N.
Krause, A. S. K. Hashmi), Wiley-VCH, Weinheim, 2004; c) R.
Zimmer, C. U. Dinesh, E. Nandanan, F. A. Khan, Chem. Rev.
2000, 100, 3067.
[3] For selected reviews, see: a) R. A. Widenhoefer, X. Han, Eur. J.
Org. Chem. 2006, 4555; b) A. Hoffmann-Rꢁder, N. Krause, Org.
Biomol. Chem. 2005, 3, 387; c) S. Ma, Acc. Chem. Res. 2003, 36,
701; d) R. W. Bates, V. Satcharoen, Chem. Soc. Rev. 2002, 31, 12 ;
e) A. S. K. Hashmi, Angew. Chem. 2000, 112, 3737; Angew.
Chem. Int. Ed. 2000, 39, 3590.
[4] See, for instance: a) B. Alcaide, P. Almendros, T. Martꢂnez del
Campo, R. Rodrꢂguez-Acebes, Adv. Synth. Catal. 2007, 349, 749;
b) B. Alcaide, P. Almendros, C. Aragoncillo, M. C. Redondo, J.
Org. Chem. 2007, 72, 1604; c) B. Alcaide, P. Almendros, T.
Martꢂnez del Campo, Angew. Chem. 2006, 118, 4613; Angew.
Chem. Int. Ed. 2006, 45, 4501; d) B. Alcaide, P. Almendros, J. M.
Alonso, Chem. Eur. J. 2006, 12, 2874; e) B. Alcaide, P.
Almendros, M. C. Redondo, Chem. Commun. 2006, 2 616; f) B.
Alcaide, P. Almendros, C. Aragoncillo, M. C. Redondo, M. R.
Torres, Chem. Eur. J. 2006, 12, 1539.
Scheme 7. Mechanistic explanation for the PdII-catalyzed heterocycliza-
tion reaction of g-allenols 3a–d.
[5] a) B. Alcaide, P. Almendros, C. Aragoncillo, M. C. Redondo,
Eur. J. Org. Chem. 2005, 98; b) B. Alcaide, P. Almendros, C.
Aragoncillo, Chem. Eur. J. 2002, 8, 1719.
[6] The only available Pt-mediated oxycyclization of a g-allenol is
the 6-exo cyclization of 2,2-diphenylhexa-4,5-dien-1-ol, which
leads to 6-methyl-3,3-diphenyl-3,4-dihydro-2H-pyran. See: Z.
Zhang, C. Liu, R. E. Kinder, X. Han, H. Qian, R. A. Widenhoe-
fer, J. Am. Chem. Soc. 2006, 128, 9066.
intramolecular cycloetherification reaction to give the palla-
datetrahydrooxepine 13. Intermediate 13 reacted with the
appropriate allyl halide to form intermediate 14, which after
dehalopalladation generated tetrahydrooxepine-b-lactams 5
with concomitant regeneration of the PdII species.
[7] For selected examples of Ag-mediated heterocyclizations of a-
allenols, see: a) J. A. Marshall, R. H. Yu, J. F. Perkins, J. Org.
Chem. 1995, 60, 5550; b) O. Flꢁgel, H.-U. Reissig, Eur. J. Org.
Chem. 2004, 2797; c) B. Alcaide, P. Almendros, R. Rodrꢂguez-
Acebes, J. Org. Chem. 2006, 71, 2346.
[8] For a review of gold catalysis, see: a) A. S. K. Hashmi, G. J.
Hutchings, Angew. Chem. 2006, 118, 8064; Angew. Chem. Int.
Ed. 2006, 45, 7896; For gold-catalyzed cyclizations of a- and b-
allenols, see: b) B. Gockel, N. Krause, Org. Lett. 2006, 8, 4485;
c) N. Morita, N. Krause, Eur. J. Org. Chem. 2006, 4634; For
enantioselective gold-catalyzed cycloisomerization of g- and d-
allenols, see: d) Z. Zhang, R. A. Widenhoefer, Angew. Chem.
2007, 119, 287; Angew. Chem. Int. Ed. 2007, 46, 283.
In conclusion, an efficient metal-controlled regiodiver-
gent preparation of tetrahydrofurans and tetrahydrooxepines
starting from enantiopure g-allenols has been developed.[12] In
addition, it has been observed that a (methoxymethyl)oxy
protecting group not only masks a hydroxyl functionality, but
also exerts directing effects as a controlling unit in regiose-
lectivity reversal.
Received: April 12, 2007
Published online: July 30, 2007
Keywords: allenes · gold · heterocycles · palladium ·
.
[9] The formation of all-carbon quaternary centers in an asymmetric
manner is one of the most difficult problems in organic
chemistry, not least because the process requires the creation
regioselectivity
À
of a new C C bond at a hindered center. For recent selected
reviews, see: a) QuaternaryStereocenters: Challenges and Sol-
utions for Organic Synthesis (Eds.: J. Christoffers, A. Baro),
[1] For selected reviews, see: a) J. P. Wolfe, M. B. Hay, Tetrahedron
2007, 63, 261; b) N. L. Snyder, H. M. Haines, M. W. Peczuh,
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 6684 –6687