The material can form a switchable hexagonal columnar phase
and B4 phase. The columnar phase has a large two-dimensional
hexagonal lattice of 65–70 A and exhibits ferroelectric switching
with spontaneous polarization along the column axis. The
number of molecules calculated in each column slice is found
to be 10–11. It is assumed that the combination of the acute
angle central core and the lateral polar fluorine substituent
cooperates to generate a hexagonal columnar self-assembly,
although the molecule itself only has one single alkoxy tail on
each side wing. This could open up prospects for new molecular
designs in hexagonal columnar liquid crystal systems.
Acknowledgements
This work was supported by National Natural Science Founda-
tion of China (No. 51073007). X. Li is grateful to Prof. Junji
Watanabe in Tokyo Institute of Technology for the stay in his
lab on the exchange research.
Notes and references
1 T. N. Y. Hoang, D. Pociecha, M. Salamonczyk, E. Gorecka and
R. Deschenaux, Soft Matter, 2011, 7, 4948–4953.
2 J. Wu, W. Pisula and K. Mullen, Chem. Rev., 2007, 107, 718–747.
¨
3 L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons,
R. H. Friend and J. D. MacKenzie, Science, 2001, 293, 1119–1122.
4 E. Y. Elgueta, M. L. Parraa, J. Barberab, J. M. Vergaraa and
´
J. A. Ulloaa, Supramol. Chem., 2011, 23, 721–730.
5 H. S. Kim, S. M. Choi, J. H. Lee, P. Busch, S. J. Koza,
E. A. Verploegen and B. D. Pate, Adv. Mater., 2008, 20,
1105–1109.
6 A. Calo, P. Stoliar, M. Cavallini, S. Sergeyev, Y. H. Geerts and
F. Biscarini, J. Am. Chem. Soc., 2008, 130, 11953–11958.
7 S. Kumar, Chem. Soc. Rev., 2006, 35, 83–109.
8 (a) T. Kato, N. Mizoshita and K. Kishimoto, Angew. Chem., Int.
Ed., 2006, 45, 38–68; (b) B. Donnio, S. Buathong, I. Bury and
D. Guillon, Chem. Soc. Rev., 2007, 36, 1495–1513.
9 K. Kishikawa, S. Nakahara, Y. Nishikawa, S. Kohmoto and
M. Yamamoto, J. Am. Chem. Soc., 2005, 127, 2565–2571.
10 E. Gorecka, D. Pociecha, J. Mieczkowski, J. Matraszek,
D. Guillon and B. Donnio, J. Am. Chem. Soc., 2004, 126,
15946–15947.
11 X. Li, S. Kang, S. K. Lee, M. Tokita and J. Watanabe, Jpn. J.
Appl. Phys., 2010, 49, 121701–121706.
12 J. Thisayukta, H. Takezoe and J. Watanabe, Jpn. J. Appl. Phys.,
2001, 40, 3277–3281.
13 L. E. Hough, H. T. Jung, D. Kruerke, M. S. Heberling,
M. Nakata, C. D. Jones, D. Chen, D. R. Link, J. Zasadzinski,
G. Heppke, J. P. Rabe, W. Stocker, E. Korblova, D. M. Walba,
M. A. Glaser and N. A. Clark, Science, 2009, 325, 452–456.
14 J. Thisayukta, Y. Nakayama, S. Kawauchi, H. Takezoe and
J. Watanabe, J. Am. Chem. Soc., 2000, 122, 7441–7448.
15 S. K. Lee, Y. Naito, L. Shi, M. Tokita, H. Takezoe and
J. Watanabe, Liq. Cryst., 2007, 34, 935–943.
Experimental
The synthetic routes are illustrated in Scheme S1 (ESIw). All
reagents including 1,7-dihydroxynaphthalene were purchased
from TCI (Tokyo Kasei kogyo Co, Ltd) and used without
further purification. Solvents were purified by normal procedures
1
and handled under a moisture-free atmosphere. H-NMR and
13C-NMR spectra were recorded on a JEOL FT-NMR AL400
(400 MHz) spectrometer using CDCl3 as an internal standard.
Elemental analysis was determined by a CHN corder MT-6.
Optical textures were observed under a crossed polarizer
using an Olympus BX51 polarizing optical microscopy (POM)
system equipped with a temperature-controlled Mettler Toledo
FP 82 hot stage. Transition temperatures and corresponding
enthalpies were determined by differential scanning calorimetry
(DSC) using a Perkin-Elmer DSC 7 calorimeter. Wide-angle X-ray
diffraction (WAXD) measurements were performed using a
Rigaku-Denki RINT-2500 X-ray generator with monochromic
Cu-Ka radiation from the graphite crystal of the monochromator
and a flat-plate-type imaging plate. Powder X-ray investigations
were carried out with samples kept in glass capillary tubes with a
diameter of 1.5 mm. Electro-optic switching was observed by using
a high-speed voltage amplifier (FLC Electronics, F20A) connected
to a function generator (NF Electronic Instruments, WF1945A).
The sample was sandwiched between two glass plates with a
transparent indium tin oxide (ITO) electrode. Neither polymer
coating nor rubbing was performed on the substrate surface.
16 J. P. Bedel, J. C. Rouillon, J. P. Marcerou, M. Laguerre,
H. T. Nguyen and M. F. Achard, J. Mater. Chem., 2002, 12,
2214–2220.
17 (a) J. Malthete, H. T. Nguyen and C. Destrade, Liq. Cryst., 1993,
13, 171–187; (b) H. T. Nguyen, C. Destrade and J. Malthete,
Adv. Mater., 1997, 9, 375; (c) J. Malthete, A. Collet and
A. M. Levelut, Liq. Cryst., 1989, 5, 123.
c
1136 New J. Chem., 2012, 36, 1133–1136
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012