5046 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 20
Brief Articles
22a,b. This material is available free of charge via the Internet at
to visualize D3 receptors expressed in CHO cells in a preliminary
experiment by epifluorescence microscopy. However, the
fluorescent properties of the ligands presented here do not
exclude their use in other fluorescence techniques, such as two-
photon fluorescence microscopy. This sensitive technique allows
visualization of fluorescent probes in living cells by two-near-
infrared-photon excitation, thus avoiding excitation wavelengths
typical of one-photon fluorescence microscopy (300-560 nm)
that cause damage to the substrates and cell autofluorescence.31
References
(1) Daly, C. J.; Milligan, C. M.; Milligan, G.; MacKenzie, J. F.; McGrath,
J. C. Cellular localisation and pharmacological characterisation of
functioning R1-adrenoceptors by fluorescent ligand binding and image
analysis reveals identical binding properties of clustered and diffuse
populations of receptors. J. Pharmacol. Exp. Ther. 1998, 286, 984-
990.
(2) Cha, J. H.; Zou, M.; Adkins, E. M.; Rasmussen, S. G. F.; Loland, C.
J.; Schoenenberger, B.; Gether, U.; Newman, A. H. Rhodamine-
labeled 2â-carbomethoxy-3â-(3,4-dichlorophenyl)tropane analogues
as high-affinity fluorescent probes for the dopamine transporter. J.
Med. Chem. 2005, 48, 7513-7516.
Experimental Section
General Procedure for the Synthesis of 15a,b-18a,b. A
mixture of phenol 6-9 (1.0 mmol), the alkylating agent 10a,b (1.0
mmol), powdered KOH (10 mmol), and 18-crown-6 (1.0 mmol) in
toluene (20 mL) was vigorously stirred under reflux overnight. After
cooling, the reaction mixture was concentrated and the residue was
partitioned between H2O (30 mL) and EtOAc (30 mL). The organic
layer was separated, washed with brine, dried over Na2SO4, and
then concentrated in vacuo. The crude residue was chromatographed
(19:1 CHCl3/MeOH as eluent) to give the target compound.
(4-[3-[4-(2-Methoxyphenyl)piperazin-1-yl]propoxy]phenyl)-
imidazo[1,2-a]pyridine (15a). Yield, 75%. ESI+/MS m/z 443
(MH+). ESI+/MS/MS m/z 233 (100), 225 (20), 205 (28). 1H NMR
(CDCl3): δ 2.02-2.11 (m, 2H), 2.65 (t, 2H, J ) 7.1 Hz), 2.73 (br
s, 4H), 3.14 (br s, 4H), 3.87 (s, 3H), 4.10 (t, 2H, J ) 6.3 Hz), 6.76
(dt, 1H, J ) 0.8, 6.6 Hz), 6.85-7.03 (m, 6H), 7.15 (app t, 1H),
7.61 (d, 1H, J ) 9.0 Hz), 7.78 (s, 1H), 7.86-7.90 (m, 2H), 8.10
(d, 1H, J ) 6.6 Hz). The hydrochloride salt melted at 226-228 °C
(from CH3OH/Et2O). Anal. (C27H30N4O2‚4HCl‚H2O) C, H, N.
General Procedure for the Synthesis of Compounds 19a,b-
22a,b. A stirred mixture of alkylating agent 11-14 (1.0 mmol),
1-(2-methoxyphenyl)piperazine or 1-(2,3-dichlorophenyl)piperazine
(1.2 mmol) and a slight excess of K2CO3 in CH3CN was refluxed
overnight. After cooling, the mixture was evaporated to dryness
and H2O was added to the residue. The aqueous phase was extracted
with CH2Cl2 (2 × 20 mL). The collected organic layers were dried
over Na2SO4 and evaporated under reduced pressure. The crude
residue was chromatographed (19:1 CHCl3/CH3OH as eluent) to
afford the target compounds.
(4-[3-[4-(2-Methoxyphenyl)piperazin-1-yl]butoxy]phenyl)imi-
dazo[1,2-a]pyridine (19a). Yield, 74%. ESI+/MS m/z 457 (MH+).
ESI+/MS/MS m/z 247 (100). 1H NMR (CDCl3): δ 1.76-1.90 (m,
4H), 2.53 (app t, 2H), 2.71 (br s, 4H), 3.13 (br s, 4H), 3.86 (s, 3H),
4.05 (t, 2H, J ) 6.2 Hz), 6.76 (t, 1H, J ) 6.6 Hz), 6.84-7.03 (m,
6H), 7.15 (app t, 1H), 7.60 (d, 1H, J ) 8.8 Hz), 7.78 (s, 1H), 7.85-
7.90 (m, 2H), 8.10 (d, 1H, J ) 6.9 Hz). Mp 128-130 °C (from
CHCl3/n-hexane). Anal. (C28H32N4O2) C, H, N.
Fluorescence Spectroscopy. Emission and excitation spectra of
15a,b-22a,b were recorded as detailed in Supporting Information.
Fluorescence quantum yields were calculated in reference to that
of 2-aminopyridine in ethanol as a standard (excitation wavelength,
285 nm; Φ ) 0.37),29 according to Demas et al.32
(3) Middleton, R. J.; Briddon, S. J.; Cordeaux, Y.; Yates, A. S.; Dale,
C. L.; George, M. W.; Baker, J. G.; Hill, S. J.; Kellam, B. New
fluorescent adenosine A1-receptor agonists that allow quantification
of ligand-receptor interactions in microdomains of single living cells.
J. Med. Chem. 2007, 50, 782-793.
(4) Taliani, S.; Simorini, F.; Sergianni, V.; La Motta, C.; Da Settimo,
F.; Cosimelli, B.; Abignente, E.; Greco, G.; Novellino, E.; Rossi,
L.; Gremigni, V.; Spinetti, F.; Chelli, B.; Martini, C. New fluorescent
2-phenylindolglyoxylamide derivatives as probes targeting the pe-
ripheral-type benzodiazepine receptor: design, synthesis, and biologi-
cal evaluation. J. Med. Chem. 2007, 50, 404-407.
(5) Pick, H.; Preuss, A.; Mayer, M.; Wohland, T.; Hovius, R.; Vogel,
H. Monitoring expression and clustering of the ionotropic 5-HT3
receptor in plasma membranes of live biological cells. Biochemistry
2003, 42, 877-884.
(6) Arttamangkul, S.; Alvarez-Maubecin, V.; Thomas, G.; Williams, J.
T.; Grandy, D. K. Binding and internalization of fluorescent opioid
peptide conjugates in living cells. Mol. Pharmacol. 2000, 58, 1570-
1580.
(7) Patel, R. C.; Kumar, U.; Lamb, D. C.; Eid, J. S.; Rocheville, M.;
Grant, M.; Rani, A.; Hazlett, T.; Patel, S. C.; Gratton, E.; Patel, Y.
C. Ligand binding to somatostatin receptors induces receptor-specific
oligomer formation in live cells. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 3294-3299.
(8) Fabry, M.; Cabrele, C.; Hocker, H.; Beck-Sickinger, A. G. Differently
labeled peptide ligands for rapid investigation of receptor expression
on a new human glioblastoma cell line. Peptides 2000, 21, 1885-
1893.
(9) Janssen, M. J.; Ensing, K.; de Zeeuw, R. A. A fluorescent receptor
assay for benzodiazepines using coumarin-labeled desethylflumazenil
as ligand. Anal. Chem. 2001, 73, 3168-3173.
(10) Tairi, A.-P.; Hovius, R.; Pick, H.; Blasey, H.; Bernard, A.; Surprenant,
A.; Lundstro¨m, K.; Vogel, H. Ligand binding to the serotonin 5-HT3
receptor studied with a novel fluorescent ligand. Biochemistry 1998,
37, 15850-15864.
(11) Chen, H.; Chung, N. N.; Lemieux, C.; Zelent, B.; Vanderkooi, J.
M.; Gryczynski, I.; Wilkes, B. C.; Schiller, P. W. [Aladan3]TIPP: a
fluorescent δ-opioid antagonist with high δ-receptor binding affinity
and δ-selectivity. Biopolymers 2005, 80, 325-331.
(12) Vazquez, M. E.; Blanco, J. B.; Salvadori, S.; Trapella, C.; Argazzi,
R.; Bryant, S. D.; Jinsmaa, Y.; Lazarus, L. H.; Negri, L.; Giannini,
E.; Lattanzi, R.; Colucci, M.; Balboni, G. 6-N,N-Dimethylamino-
2,3-naphthalimide: a new environment-sensitive fluorescent probe
in δ- and µ-selective opioid peptides. J. Med. Chem. 2006, 49, 3653-
3658.
(13) Ma, P.; Zemmel, R. Value of novelty? Nat. ReV. Drug DiscoVery
2002, 1, 571-572.
(14) Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwarz,
J. C. Molecular cloning and characterization of a novel dopamine
receptor (D3) as a target of neuroleptics. Nature 1990, 347, 72-76.
(15) Joyce, J. N. Dopamine D3 receptor as a therapeutic target for
antipsychotic and antiparkinsonian drugs. Pharmacol. Ther. 2001,
90, 231-259.
Fluorescent Labeling of CHO Cells. Fluorescence microscopy
observation in CHO cells overexpressing human D3 receptors was
performed as previously described (see experimental details in
Supporting Information).4
(16) Joyce, J. N.; Millan, M. J. Dopamine D3 receptor agonists for
protection and repair in Parkinson’s disease. Curr. Opin. Pharmacol.
2007, 7, 100-105.
(17) Xi, Z. X.; Newman, A. H.; Gilbert, J. G.; Pak, A. C.; Peng, X. Q.;
Ashby, C. R., Jr.; Gitajn, L.; Gardner, E. L. The novel dopamine D3
receptor antagonist NGB 2904 inhibits cocaine’s rewarding effects
and cocaine-induced reinstatement of drug-seeking behavior in rats.
Neuropsychopharmacology 2006, 31, 1393-1405.
Acknowledgment. The authors thank Professor Roberto
Maggio (Universita` di L’Aquila, Italy) for providing CHO cells
expressing the human D3 receptor and Dr. Giuseppe Procino
(Universita` degli Studi di Bari, Italy) for experiments with
epifluorescence microscopy.
(18) Vengeliene, V.; Leonardi-Essmann, F.; Perreau-Lenz, S.; Gebike-
Haerter, P.; Drescher, K.; Gross, G.; Spanagel, R. The dopamine D3
receptor plays an essential role in alcohol-seeking and relapse. FASEB
J. 2006, 20, 2223-2233.
(19) Le Foll, B.; Goldberg, S. R.; Sokoloff, P. Dopamine D3 receptor
ligands for the treatment of tobacco dependence. Expert Opin. InVest.
Drugs 2007, 16, 45-57.
Supporting Information Available: Procedure for the synthe-
ses and spectral data of 3-9, 10b, 11-14; spectral data of 15b,
16a,b-18a,b, 19b, 20a,b-22a,b; biological methods and statistical
analysis; excitation and emission spectra of 15a and 19a in ethanol;
experimental procedures for fluorescence spectroscopy and fluo-
rescent labeling of CHO cells; elemental analysis data of 15a,b-