2114
L. Valis, H.-A. Wagenknecht
LETTER
(4) (a) Fromherz, P.; Rieger, B. J. Am. Chem. Soc. 1986, 108,
5361. (b) Atherton, S. J.; Beaumont, P. C. J. Phys. Chem.
1987, 91, 3993. (c) Dunn, D. A.; Lin, V. H.; Kochevar, I. E.
Biochemistry 1992, 31, 11620.
(5) (a) Kelley, S. O.; Barton, J. K. Chem. Biol. 1998, 5, 413.
(b) Wan, C.; Fiebig, T.; Kelley, S. O.; Treadway, C. R.;
Barton, J. K.; Zewail, A. H. Proc. Natl. Acad. Sci. U. S. A.
1999, 96, 6014.
(6) (a) Amann, N.; Huber, R.; Wagenknecht, H.-A. Angew.
Chem. Int. Ed. 2004, 43, 1845. (b) Valis, L.; Wang, Q.;
Raytchev, M.; Buchvarov, I.; Wagenknecht, H.-A.; Fiebig,
T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10192.
(7) Valis, L.; Amann, N.; Wagenknecht, H.-A. Org. Biomol.
Chem. 2005, 3, 36.
(8) (a) Luedtke, N. W.; Liu, Q.; Tor, Y. Chem. Eur. J. 2005, 11,
495. (b) Kubař, T.; Hanus, M.; Ryjáček, F.; Hobza, P. Chem.
Eur. J. 2006, 12, 280.
(9) Huber, R.; Amann, N.; Wagenknecht, H.-A. J. Org. Chem.
2004, 69, 744.
(10) Amann, N.; Wagenknecht, H.-A. Tetrahedron Lett. 2003,
44, 1685.
(11) Fukui, K.; Iwane, K.; Shimidzu, T.; Tanaka, K. Tetrahedron
Lett. 1996, 37, 4983.
(12) Asanuma, H.; Kashida, H.; Liang, X.; Komiyama, M. Chem.
Commun. 2003, 1536.
10.67 (s, 1 H, NH, 3-alloc), 10.38 (s, 1 H, NH, 8-alloc), 9.08
(d, 3J = 9.3 Hz, 1 H, H-1), 9.02 (d, 3J = 9.1 Hz, 1 H, H-10),
8.57 (s, 1 H, H-4), 8.26 (m, 1 H, H-9), 8.10 (dd, 3J = 9.1 Hz,
4J = 1.1 Hz, 1 H, H-2), 7.82–7.71 (m, 6 H, 6-Ph, H-7), 7.39–
7.20 (m, 9 H, ArH, DMT-H), 6.88 (m, 4 H, ArH, DMT-H),
5.99 (m, 2 H, CH2=CH, 3- and 8-alloc), 5.37 (m, 1 H,
CH2=CH, trans, 3-alloc), 5.30 (m, 1 H, CH2=CH, trans, 8-
alloc), 5.25 (m, 1 H, CH2=CH, cis, 3-alloc), 5.21 (m, 1 H,
CH2=CH, cis, 8-alloc), 4.67 (d, 3J = 5.5 Hz, 2 H, OCH2, 3-
alloc), 4.57 (d, 3J = 5.5 Hz, 2 H, OCH2, 8-alloc), 4.73 (m, 1
H, CHOH), 4.63 (m, 2 H, H-1¢), 3.72 (s, 6 H, OMe), 3.08 (m,
1 H, CH2ODMT, NHCH), 2.80 (m, 2 H, H-3¢), 2.58 (m, 1 H,
CH2ODMT), 2.09 (m, 2 H, H-2¢), 0.93 (d, J = 6.3 Hz, 3 H,
Me). MS (ESI): m/z (%) = 901.4 (100) [M]+, 599.3 (15) [M
+ H – DMT]+, 303.3 (33) [DMT]+, 468.3 (35). C55H57N4O8 :
+
902.06.
(19) The product 7 was purified by flash chromatography (silica
gel; CH2Cl2–MeOH, 100:5, 0.1% pyridine; then EtOAc–
MeOH–H2O, 6:2:2, 0.1% pyridine). Experimental data of 7:
Rf 0.60 (EtOAc–MeOH–H2O, 6:2:2). 1H NMR (300 MHz,
DMSO-d6): d = 8.67 (d, 3J = 9.1 Hz, 1 H, H-1), 8.62 (d, 3J =
9.3 Hz, 1 H, H-10), 7.67 (m, 5 H, 6-Ph), 7.51 (m, 2 H, H-9,
H-4), 7.36–7.20 (m, 10 H, ArH, DMT-H, H-2), 6.86 (m, 4 H,
ArH, DMT-H), 6.38 (s, 2 H, 3-NH2), 6.26 (s, 1 H, H-7), 5.96
(s, 2 H, 8-NH2), 4.50 (m, 3 H, H-1¢, CHOH), 3.72 (s, 6 H,
OMe), 3.27 (m, 1 H, NH2CH), 3.00 (m, 2 H, H-3¢), 2.79 (m,
1 H, CH2ODMT), 2.63 (m, 1 H, CH2ODMT), 2.25 (m, 2 H,
H-2¢), 0.92 (d, J = 6.3 Hz, 3 H, Me). MS (ESI): m/z (%) =
733.4 (100) [M]+, 431.3 (13) [M + H – DMT]+, 303.3 (85)
(13) Kashida, H.; Tanaka, M.; Baba, S.; Sakomoto, T.; Kawai,
G.; Asanuma, H. Chem. Eur. J. 2006, 12, 777.
(14) The product 2 was co-evaporated three times with toluene
and dried under high vacuum. Experimental data of 2: Rf
0.60 (CH2Cl2–MeOH, 10:2). 1H NMR (250 MHz, DMSO-
d6): d = 8.81 (d, J = 8.5 Hz, 1 H, NH), 4.70 (m, 2 H, CHOH,
OH), 3.74 (m, 1 H, CHNH), 3.67–3.71 (m, 1 H, OH), 3.53–
3.60 (m, 1 H, CH2OH), 3.46–3.48 (m, 1 H, CH2OH), 0.85 (d,
J = 8.3 Hz, 3 H, Me).
(15) The product 3 was purified by flash chromatography (silica
gel; CH2Cl2, 0.1% pyridine, 0–2% MeOH). Experimental
data of 3: Rf 0.17 (CH2Cl2–MeOH, 100:0.5). 1H NMR (300
MHz, DMSO-d6): d = 9.25 (d, J = 8.2 Hz, 1 H, NH), 7.21–
7.40, 6.86–6.89 (m, 13 H, DMT-H), 4.70 (m, 1 H, CHOH),
3.86–3.95 (m, 2 H, OH, NHCH), 3.73 (s, 6 H, OMe), 3.14–
3.18 (dd, J = 3.6, 9.3 Hz, 1 H, CH2ODMT), 2.94–2.99 (m, 1
H, CH2ODMT), 0.93 (d, J = 6.0 Hz, 3 H, Me). 13C NMR (75
MHz, DMSO-d6): d = 157.9, 156.7, 156.3 (q, 2JCF = 36 Hz),
149.5, 144.8, 136.0, 135.6, 135.4, 129.6, 127.7, 127.5,
126.5, 123.8, 117.9, 114.1 (q, 1JCF = 288 Hz, CF3), 113.0,
85.1 (OCPh3), 64.7 (CHOH), 62.4 (CH2ODMT), 56.0
(NHCH), 54.9 (OMe), 20.0 (Me). MS (ESI): m/z (%) =
526.0(8) [M + Na]+, 303.3 (100) [DMT]+, 1028.9 (4) [2 × M
+ Na]+. C27H28F3NO5: 503.51.
(16) The product 4 was co-evaporated twice with Et2O and dried
under high vacuum. Experimental data of 4: Rf 0.24
(CH2Cl2–MeOH, 20:1). 1H NMR (300 MHz, DMSO-d6): d =
7.19–7.41, 6.83–6.92 (m, 13 H, DMT-H), 4.43 (m, 1 H,
CHOH), 3.73 (s, 6 H, OMe), 3.63 (m, 1 H, OH), 2.99–3.04
(m, 1 H, NH2CH), 2.81–2.85 (m, 1 H, CH2ODMT), 2.58 (m,
1 H, CH2ODMT), 0.95 (d, J = 6.3 Hz, 3 H, Me). 13C NMR
(75 MHz, DMSO-d6): d = 157.9, 145.1, 135.9, 135.8, 129.6,
127.7, 126.4, 113.0, 85.1 (OCPh3), 66.6 (CHOH), 65.1
(CH2ODMT), 56.5 (NH2CH), 54.9 (OMe), 20.1 (Me). MS
(ESI): m/z (%) = 430.1 (16) [M + Na]+, 303.3 (100) [DMT]+,
815.0 (8) [2 × M + H]+. C25H29NO4: 407.50.
+
[DMT]+. C47H49N4O4 : 733.92.
(20) The product 8 was dried under high vacuum. Due to the high
lability of the trifluoroacetyl groups the structure was
confirmed only by MS. Experimental data of 8: MS (ESI):
m/z (%) = 1021.3 (100) [M]+, 303.3 (38) [DMT]+.
+
C53H46F9N4O7 : 1021.94.
(21) The product 9 was dried under high vacuum. Due to the
observed high hydrolytic lability the structure was
confirmed only by MS. Experimental data of 9: MS (ESI):
m/z (%) = 1221.4 (100) [M]+, 303.3 (39) [DMT]+.
C62H63F9N6O8P+: 1222.16.
(22) An extended coupling time (1 h instead of 1.5 min for
standard couplings), a higherphosphoramidite concentration
(0.2 M instead of 0.067 M), and three coupling cycles
interrupted by washing steps were necessary to achieve
nearly quantitative coupling.
(23) For the extinction coefficients of the oligonucleotides at 260
nm, see: Puglisi, J. D.; Tinoco, I. Meth. Enzymol. 1989, 180,
304.
(24) The extinction coefficients of phenanthridinium at 260 nm is
45.200 M–1cm–1.9
(25) Experimental data of ssDNA1: e260 = 200.700 M–1cm–1. MS
(MALDI–TOF): m/z calcd for C181H225N64O98P16: 5359;
found: 5359.
(26) Experimental data of ssDNA2: e260 = 200.700 M–1cm–1. MS
(MALDI–TOF): m/z calcd for C182H228N64O98P16: 5374;
found: 5374.
(27) (a) Waring, M. J. J. Mol. Biol. 1965, 13, 269. (b) LePecq,
J.-B.; Paleotti, C. J. Mol. Biol. 1967, 27, 87. (c) Olmsted, J.
III; Kearns, D. R. Biochemistry 1977, 16, 3647.
(d) Letsinger, R. L.; Schott, M. E. J. Am. Chem. Soc. 1981,
103, 7394.
(28) Cosa, G.; Foscaneanu, K.-S.; McLean, J. R. N.; McNamee,
J. P.; Scaiano, J. C. Photochem. Photobiol. 2001, 73, 585.
(29) (a) Wagner, C.; Wagenknecht, H.-A. Org. Lett. 2006, 8,
4191. (b) Wanninger, C.; Wagenknecht, H.-A. Synlett 2006,
2051.
(17) Azhayev, A. V.; Antopolsky, M. L. Tetrahedron 2001, 57,
4977.
(18) The product 6 was purified by flash chromatography (silica
gel; CH2Cl2–MeOH, 100:3, 0.1% pyridine; then CH2Cl2–
MeOH, 10:3, 0.1% pyridine). Experimental data of 6: Rf 0.58
(CH2Cl2–MeOH, 20:3). 1H NMR (300 MHz, DMSO-d6): d =
Synlett 2007, No. 13, 2111–2115 © Thieme Stuttgart · New York