to build benzylic sulfonamides that met three essential require-
ments: (1) the sulfonamide moiety must be introduced at a late
stage of the syntheses in the presence of sensitive functionality;
(2) removable functional handles must be present to allow
diversification of substituents on both the carbon and the
nitrogen atoms bonded to sulfur as a final step of the synthesis;
and (3) the diversification steps must be sufficiently mild and
generally applicable to allow for incorporation of a range of
sterically and electronically diverse substituents. As conventional
approaches to preparing benzylic sulfonamides typically rely
on free-radical processes, harsh oxidation conditions, and
unstable sulfonyl chloride intermediates,4 we decided to devise
a new strategy for their construction. As shown in Scheme 1,
our strategy required the development of the two new procedures
that are the subject of this communicationsa cross-coupling
between an R-C-H activated, yet hydrolytically stable, sulfonyl
chloride equivalent 1 and aryl halides (Step A) and a method
for converting stable sulfonyl chloride equivalent 2 to the desired
sulfonamides 3 (Step B).
A New Strategy for the Synthesis of Benzylic
Sulfonamides: Palladium-Catalyzed Arylation
and Sulfonamide Metathesis
Jonathan B. Grimm, Matthew H. Katcher,
David J. Witter, and Alan B. Northrup*
Department of Drug Design and Optimization, Merck Research
Laboratories, Boston, Massachusetts 02115
ReceiVed July 2, 2007
SCHEME 1. Strategy for Preparing Benzylic Sulfonamides
An efficient two-step strategy has been developed to access
diversely functionalized benzylic sulfonamides. Execution
of this strategy required the development of two reaction
methods: the palladium-catalyzed cross-coupling of aryl
halides with CH-acidic methanesulfonamides and a meta-
thesis reaction between the resulting R-arylated sulfonamides
and diverse amines. The broad scope of the cross-coupling
process combined with a versatile sulfonamide metathesis
constitutes an efficient strategy for the synthesis of various
benzylic sulfonamides.
The central C-C bond-forming event in our strategy relies
on extending the scope of the palladium-catalyzed R-arylation
of carbonyl compounds5 to include substrates, such as 1,
containing a removable activating group, E, and a stable sulfonyl
chloride equivalent (SO2Z). The early, pioneering efforts of
Buchwald, Hartwig and others focused largely on the arylation
of ketones.6 Since that time, the R-arylation chemistry has been
expanded to include esters,7 amides,8 aldehydes,9 nitriles,10
nitroalkanes,11 malonates,12 sulfones,13 and sulfoximines.14 There
are even two reports concerning sulfonamide C-arylations.
The sulfonamide is a key functional group in organic
chemistry that is present both in the structures of natural products
and also in marketed therapeutics such as Celecoxib for pain
and inflammation,1 Tipranavir for HIV/AIDS,2 and Zonisamide
for seizure.3 During the course of two distinct medicinal
chemistry programs we required access to diversely substituted
benzylic sulfonamides. To enable rapid exploration of structure/
activity relationships, we searched the literature for a strategy
(4) (a) Hill, B.; Liu, Y.; Taylor, S. D. Org. Lett. 2004, 6, 4285. (b)
Abdellaoui, H.; Depreux, P.; Lesieur, D.; Pfeiffer, B.; Bontempelli, P. Synth.
Commun. 1995, 25, 1301. (c) Anderson, K. K. In ComprehensiVe Organic
Chemistry; Jones, D. N., Ed.; Pergamon Press: Oxford, 1979; Vol. 3, p
345. (d) For a creative and useful strategy limited to ammonia-derived
benzylic and alkyl sulfonamides, see: Baskin, J. M.; Wang, Z. Tetrahedron
Lett. 2002, 43, 8479.
(5) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
(6) (a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108.
(b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382. (c)
Åhman, J.; Wolfe, J. P.; Troutman, M. V.; Palucki, M.; Buchwald, S. L. J.
Am. Chem. Soc. 1998, 120, 1918. (d) Kawatsura, M.; Hartwig, J. F. J. Am.
Chem. Soc. 1999, 121, 1473. (e) Fox, J. M.; Huang, X.; Chieffi, A.;
Buchwald, S. J. Am. Chem. Soc. 2000, 122, 1360.
(7) (a) Moradi, W. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123,
7996. (b) Lee, S.; Beare, N. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001,
123, 8410. (c) Jørgensen, M.; Lee, S.; Liu, X.; Wolkowski, J. P.; Hartwig,
J. F. J. Am. Chem. Soc. 2002, 124, 12557.
(8) (a) Shaughnessy, K. H.; Hamann, B. C.; Hartwig, J. F. J. Org. Chem.
1998, 63, 6546. (b) Cossy, J.; de Filippis, A.; Pardo, D. G. Org. Lett. 2003,
5, 3037.
(1) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins,
P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro,
J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E.
G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert,
K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C J. Med. Chem. 1997,
40, 1347.
(2) Thaisrivongs, S.; Skulnick, H. I.; Turner, S. R.; Strohbach, J. W.;
Tommasi, R. A.; Johnson, P. D.; Aristoff, P. A.; Judge, T. M.; Gammill,
R. B.; Morris, J. K.; Romines, K. R.; Chrusciel, R. A.; Hinshaw, R. R.;
Chong, K.-T.; Tarpley, W. G.; Poppe, S. M.; Slade, D. E.; Lynn, J. C.;
Horng, M.-M.; Tomich, P. K.; Seest, E. P.; Dolak, L. A.; Howe, W. J.;
Howard, G. M.; Schwende, F. J.; Toth, L. N.; Padbury, G. E.; Wilson, G.
J.; Shiou, L.; Zipp, G. L.; Wilkinson, K. F.; Rush, B. D.; Ruwart, M. J.;
Koeplinger, K. A.; Zhao, Z.; Cole, S.; Zaya, R. M.; Kakuk, T. J.;
Janakiraman, M. N.; Watenpaugh, K. D. J. Med. Chem. 1996, 39, 4349.
(3) Uno, H.; Kurokawa, M.; Masuda, Y.; Nishimura, H. J. Med. Chem.
1979, 22, 180.
(9) (a) Terao, Y.; Fukuoka, Y.; Satoh, T.; Miura, M.; Nomura, M.
Tetrahedron Lett. 2002, 43, 101. (b) Muratake, H.; Natsume, M.; Nakai,
H. Tetrahedron 2004, 60, 11783.
(10) (a) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9330.
(b) You, J.; Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5051. (c)
You, J.; Verkade, J. G. J. Org. Chem. 2003, 68, 8003. (d) Wu, L.; Hartwig,
J. F. J. Am. Chem. Soc. 2005, 127, 15824.
10.1021/jo701431j CCC: $37.00 © 2007 American Chemical Society
Published on Web 09/20/2007
J. Org. Chem. 2007, 72, 8135-8138
8135