Organic Letters
Letter
Steele, A. M.; Meric, P. J. Catal. 2004, 226, 435. (d) Barroso, S.; Blay,
carboxylic acid, and a 1,2-diol moiety was oxidatively cleaved to
carboxylic acid (Scheme 3).
G.; Fernan
́
dez, I.; Pedro, J. R.; Ruiz-García, R.; Pardo, E.; Lloret, F.;
Munoz, M. C. J. Mol. Catal. A.: Chem. 2006, 243, 214. (e) Che, C.-M.;
̃
In summary, we have developed a transition-metal-free,
oxidative cleavage reaction of vic-1,2-diols to carboxylic acids
with NaOtBu under oxygen atmosphere. We also demonstrated
how to scale-up experiments without organic extraction and
chromatographic technique. This protocol was used to perform
an oxidation/oxidative cleavage reaction in a one-pot fashion.
Yip, W.-P.; Yu, W.-Y. Chem.Asian J. 2006, 1, 453. (f) Fujitani, K.;
Mizutani, T.; Oida, T.; Kawase, T. J. Oleo Sci. 2009, 58, 323.
(g) Alagiri, K.; Prabhu, K. R. Tetrahedron 2011, 67, 8544. (h) Schmidt,
A.-K. C.; Stark, C. B. W. Org. Lett. 2011, 13, 5788.
(7) (a) Shibuya, M.; Doi, R.; Shibuta, T.; Uesugi, S.-i.; Iwabuchi, Y.
Org. Lett. 2012, 14, 5006. (b) Shibuya, M.; Shibuta, T.; Fukuda, H.;
Iwabuchi, Y. Org. Lett. 2012, 14, 5010. (c) Matsusaki, Y.; Yamaguchi,
T.; Tada, N.; Miura, T.; Itoh, A. Synlett 2012, 23, 2059. (d) Shaikh, T.
M.; Hong, F.-E. Tetrahedron 2013, 69, 8929. (e) Khurana, J. M.;
Sharma, P.; Gogia, A.; Kandpal, B. M. Org. Prep. Proced. Int. 2007, 39,
185. (f) Banerjee, A.; Hazra, B.; Bhattacharya, A.; Banerjee, S.;
Banerjee, G. C.; Sengupta, S. Synthesis 1989, 765.
ASSOCIATED CONTENT
* Supporting Information
■
S
General experimental procedure and characterization of all
compounds are provided. This material is available free of
(8) Cullis, P. M.; Arnold, J. R. P.; Clarke, M.; Howell, R.; DeMira,
M.; Naylor, M.; Nicholls, D. J. Chem. Soc., Chem. Commun. 1987, 1088.
(9) The reaction of 1a was performed in the presence of TEMPO
(1−3 equiv) as radical scavenger under optimal conditions, resulted in
the formation of the desired product 2a in high yield. It is crucial
evidence to support the involvement of non-free-radical species (e.g.,
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
¯
¯OH, O2H) in this transformation.
(10) In order to eliminate the possibility of the presence of trace
transition-metal elements in NaOtBu that would potentially affect our
results, we purified the NaOtBu by sublimation and also examined by
inductively coupled plasma-atomic emission spectrometry (ICP-ACE)
prior to our investigation. These results clearly show that the contents
of transition metals (Pd, Fe, and Cu) were in the range of 0.2−0.5
ppm. After identifying negligible transition metal contents, we carried
out the reaction of 1a with the purified NaOtBu under oxygen
atmosphere to produce the desired product 2a in a yield similar to that
obtained in Table 2.
†These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the NRF Nano·Material
Technology Development Program (2012M3A7B4049652)
and the KETEP Human Resources Development Program
(20124010203270).
NOTE ADDED AFTER ASAP PUBLICATION
■
REFERENCES
A partially corrected version of this article published May 15,
2014. The fully corrected version was reposted on May 16,
2014.
■
(1) Andersson, P. G.; Munslow, I. J. Modern Reduction Method;
Wiley-VCH: New York, 2008.
(2) For allylic alcohol oxidation utilizing a NaOtBu-O2 system, see:
(a) Kim, S. M.; Kim, Y. S.; Kim, D. W.; Yang, J. W. Green Chem. 2012,
14, 2996. For representative examples of coupling reactions using
alkali tert-butoxide, see: (b) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.;
Zhou, X.; Lu, X.-Y.; Huang, K.; Zheng, S.-F.; Li, B.-J.; Shi, Z.-J. Nat.
Chem. 2010, 2, 1044. (c) Shirakawa, E.; Itoh, K.-i.; Higashino, T.;
Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537. (d) Liu, W.; Cao, H.;
Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.; Kwong, F. Y.;
Lei, A. J. Am. Chem. Soc. 2010, 132, 16737. (e) Studer, A.; Curran, D.
P. Angew. Chem., Int. Ed. 2011, 50, 5018. (f) A, S.; Liu, X.; Li, H.; He,
C.; Mu, Y. Asian J. Org. Chem. 2013, 2, 857.
(3) For transition-metal-free, aerobic oxidative cleavage reactions of
α-hydroxyl ketones with alkyl halides to esters using K2CO3, see: Liu,
H.; Dong, C.; Zhang, Z.; Wu, P.; Jiang, X. Angew. Chem., Int. Ed. 2012,
51, 12570.
(4) (a) Fieser, L. F.; Fieser, M. In Reagents for Organic Synthesis;
Wiley-VCH: New York, 1967; p 815. (b) Shing, T. K. M. In
Comprehensive Organic Synthesis; Trost, B. M., Eds.; Pergamon Press:
Oxford, 1991; p 703.
(5) (a) Sugimoto, H.; Spencer, L.; Sawyer, D. T. Proc. Natl. Acad. Sci.
U.S.A. 1987, 84, 1731. (b) Dakdouki, S. C.; Villemin, D.; Bar, N. Eur. J.
Org. Chem. 2011, 4448. (c) Du, G.; Ellern, A.; Woo, L. K. Inorg. Chem.
2004, 43, 2379. (d) Okamoto, T.; Sasaki, K.; Oka, S. J. Am. Chem. Soc.
1988, 110, 1187. (e) Beebe, T. R.; Hii, P.; Reinking, P. J. Org. Chem.
1981, 46, 1927. (f) Zhong, Y.-L.; Shing, T. K. M. J. Org. Chem. 1997,
62, 2622. (g) Marken, F.; Squires, A. M.; Alden, J. A.; Compton, R. G.;
Buston, J. E. H.; Moloney, M. G. J. Phys. Chem. B 1998, 102, 1186.
(h) Cambie, R. C.; Chambers, D.; Rutledge, P. S.; Woodgate, P. D. J.
Chem. Soc., Perkin Trans. 1 1978, 1483.
(6) (a) Bailey, A. J.; Griffith, W. P.; Mostafa, S. I.; Sherwood, P. A.
Inorg. Chem. 1993, 32, 268. (b) Aït-Mohand, S.; Levina, A.; Lunak, S.;
Muzart, J. Inorg. Chim. Acta 1995, 238, 183. (c) Tsang, S. C.; Zhu, J.;
2879
dx.doi.org/10.1021/ol501012f | Org. Lett. 2014, 16, 2876−2879