Angewandte
Chemie
the rotor easily by optical readout, owing to the characteristic
fluorescence of the anthracenes 1 in contrast to the non-
fluorescent endoperoxides 2 (Figure 1). Furthermore, molec-
ular oxygen is the only waste product, and thus the
thermolysis represents the back reaction of the photooxyge-
nation.
sole waste product, making our molecular switch environ-
mentally friendly.
Received: January 31, 2007
Revised: May 22, 2007
Published online: August 23, 2007
To complete the switching process and to set up the final
molecular device for repetitive cycles, we chose the methoxy
derivative trans-1e, since of the relevant trans isomers it
provides the best yield in the reaction with 1O2. Indeed,
heating anthracene cis-1e to 3208C forces the rotation around
Keywords: acenes · axial rotation · molecular switches ·
oxidation · peroxides
.
ꢀ
the C C single bond resulting in the thermodynamically more
[1] a)V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew.
Chem. 2000, 112, 3484; Angew. Chem. Int. Ed. 2000, 39, 3348;
b)Special issue on molecular machines: Acc. Chem. Res. 2001,
34; c)J. P. Sauvage, Molecular Machines and Motors, Springer,
Berlin, 2001; d)V. Balzani, A. Credi, Molecular Devices and
Machines—A Journey into the Nanoworld, Wiley-VCH, Wein-
heim, 2003; e)“Molecular Machines”: T. R. Kelly, Top. Curr.
Chem. 2005, 262; f)Recent review with definitions of machines,
motors, and switches: E. R. Kay, D. A. Leigh, F. Zerbetto,
Angew. Chem. 2007, 119, 72; Angew. Chem. Int. Ed. 2007, 46, 72.
[2] a)D. Stock, A. G. W. Leslie, J. E. Walker, Science 1999, 286,
1700; b)R. D. Vall, R. A. Milligan, Science 2000, 288, 88; c)M.
Schliwa, G. Woehlke, Nature 2003, 422, 759; d)T. R. Kelly,
Angew. Chem. 2005, 117, 4194; Angew. Chem. Int. Ed. 2005, 44,
4124; e)W. Junge, N. Nelson, Science 2005, 308, 642.
stable trans isomer because of steric and electrostatic
repulsions. After 10 min the trans/cis ratio was 90:10, and
the anthracene 1e was re-isolated quantitatively without
decomposition.
The complete cycle of the molecular switch is character-
ized by three stations (Scheme 5). Starting from the anthra-
[3] a) Molecular Motors (Ed.: M. Schliwa), Wiley-VCH, Weinheim,
2002; b)T. R. Kelly, H. De Silva, R. A. Silva, Nature 1999, 401,
150; c)N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N.
Harada, B. L. Feringa, Nature 1999, 401, 152; d)D. A. Leigh,
J. K. Y. Wong, F. Dehez, F. Zerbetto, Nature 2003, 424, 174;
e)J. V. Hernꢀndez, E. R. Kay, D. A. Leigh, Science 2004, 306,
1532; f)Highlight: C. P. Mandl, B. Kꢁnig, Angew. Chem. 2004,
116, 1650; Angew. Chem. Int. Ed. 2004, 43, 1622; g)J.-M. Lehn,
Chem. Eur. J. 2006, 12, 5910; h)W. R. Browne, M. M. Pollard, B.
de Lange, A. Meetsma, B. L. Feringa, J. Am. Chem. Soc. 2006,
128, 12412; i)S. Saha, J. F. Stoddart, Chem. Soc. Rev. 2007, 36, 77.
[4] a) Molecular Switches (Ed.: B. Feringa), Wiley-VCH, Weinheim,
2001; b)R. A. Bissell, E. Cꢂrdova, A. E. Kaifer, J. F. Stoddart,
Nature 1994, 369, 133; c)M. C. Jimenez, C. Dietrich-Buchecker,
J.-P. Sauvage, Angew. Chem. 2000, 112, 3422; Angew. Chem. Int.
Ed. 2000, 39, 3284; d)A. M. Brouwer, C. Frochot, F. G. Gatti,
D. A. Leigh, L. Mottier, F. Paolucci, S. Roffia, G. W. H. Wurpel,
Science 2001, 291, 2124; e)G. S. Kottas, L. I. Clarke, D. Horinek,
J. Michl, Chem. Rev. 2005, 105, 1281; f)M. F. Hawthorne, B. M.
Ramachandran, R. D. Kennedy, C. B. Knobler, Pure Appl.
Chem. 2006, 78, 1299.
[5] a)R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, M.
Venturi, Acc. Chem. Res. 2001, 34, 224; b)A. Credi, Aust. J.
Chem. 2006, 59, 157.
[6] S. P. Fletcher, F. Dumur, M. M. Pollard, B. L. Feringa, Science
2005, 310, 80.
[7] a)M. Prein, W. Adam, Angew. Chem. 1996, 108, 519; Angew.
Chem. Int. Ed. Engl. 1996, 35, 477; b)W. Adam, M. Prein, Acc.
Chem. Res. 1996, 29, 275; c)M. Stratakis, M. Orfanopoulos,
Tetrahedron 2000, 56, 1595; d)E. L. Clennan, Tetrahedron 2000,
56, 9151; e)E. L. Clennan, A. Pace, Tetrahedron 2005, 61, 6665;
f)A. Greer, Acc. Chem. Res. 2006, 39, 797.
[8] a)T. Linker, L. Frꢁhlich, Angew. Chem. 1994, 106, 2064; Angew.
Chem. Int. Ed. Engl. 1994, 33, 1971; b)T. Linker, L. Frꢁhlich, J.
Am. Chem. Soc. 1995, 117, 2694; c)T. Linker, F. Rebien, G. Tꢂth,
Chem. Commun. 1996, 2585; d)L. Frꢁhlich, T. Linker, Synlett
2004, 2725; e)W. Fudickar, K. Vorndran, T. Linker, Tetrahedron
2006, 62, 10639.
Scheme 5. Three stations of the molecular switch 1e with stator (blue)
and rotor (green).
1
cene trans-1e (station A), reaction with O2 in the key step
yields the endoperoxide 2e (station B). Cycloreversion by
thermolysis affords selectively the cis isomer 1e in quantita-
tive yield (station C). During the first two steps, the rotor
(green)undergoes a selective 180 8 rotation around the stator
(blue), with oxygen as the only waste product. Finally, heating
to 3208C returns the molecular switch to its initial state with
high yield and high trans selectivity (station A), and thus
repetitive switching is possible.
In summary, we set up molecular rotary switches, which
can be flipped by molecular oxygen in its singlet state and by
thermal energy. The stator and rotor are easily connected in
only one step from commercially available starting materials.
High energetic barriers for the rotations of the aryl substitu-
ꢀ
ents around the C C single bonds of the anthracenes were
found, which were overcome during the oxidation with singlet
oxygen. The rotation of the switch proceeds with good yields,
and the different stations can be conveniently observed by
UV spectroscopy. Finally, a full switching process requires
only three succinct reaction steps, and oxygen is formed as the
[9] a)W. Fudickar, A. Fery, T. Linker, J. Am. Chem. Soc. 2005, 127,
9386; b)W. Fudickar, T. Linker, Chem. Eur. J. 2006, 12, 9276.
Angew. Chem. Int. Ed. 2007, 46, 7689 –7692
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7691