5388
W. Zhong et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5384–5389
References and notes
1. Dhavan, R.; Tsai, L.-H. Nat. Rev. Mol. Cell Biol. 2001, 2,
749.
2. Smith, D. S.; Tsai, L.-H. Trends Cell Biol. 2003, 12(1), 28.
3. Nikolic, M.; Dudek, H.; Kwon, Y. T.; Ramos, Y. F.; Tsai,
L. H. Genes Dev. 1996, 10, 816.
4. Kwon, Y. T.; Gupta, A.; Zhou, Y.; Mikolic, M.; Tsai, L.
H. Curr. Biol. 2000, 10, 363.
5. Kwon, Y. T.; Tsai, L. H.; Crandell, J. E. J. Comp. Neurol.
1999, 415, 218.
6. (a) Tsai, L.-H.; Lee, M.-S.; Cruz, J. Biochim. Biophys. Acta
2004, 1697, 137; (b) Maccioni, R. B.; Otth, C.; Concha, I.
I.; Munoz, J. P. Eur. J. Biochem. 2001, 268, 1518.
7. Smith, P. D.; Crocker, S. J.; Jackson-Lewis, V.; Jordan-
Sciutto, K. L.; Hayley, S.; Mount, M. P.; O’Hare, M. J.;
Callaaghan, S.; Slack, R. S.; Przedborski, S. Proc. Natl.
Acad. Sci 2003, 100, 13650.
8. Patzke, H.; Tsai, L.-H. Trends Neurosci. 2002, 25, 8.
9. (a) Wang, J.; Lui, S.; Fu, Y.; Wang, J. H.; Lu, Y. Nat.
Neurosci. 2003, 6, 1039; (b) Weishaupt, J. H.; Kussmaul,
L.; Grotsch, P.; Heckel, A.; Rohde, G.; Romig, H.; Bahr,
M.; Gillardson, F. Mol. Cell. Neurosci. 2003, 24, 489; (c)
Wang, F.; Corbett, D.; Osuga, H. J. Cereb. Blood Flow
Metab. 2002, 22, 171; (d) Osuga, H.; Osuga, S.; Wang, F.;
Fetni, R.; Hogan, M. J.; Slack, R. S.; Hakim, A. M.;
Ikeda, J. E.; Park, D. S. Proc. Natl. Acad. Sci 2000, 97,
10254.
10. (a) Gompel, M.; Leost, M.; Bal de Kier Joffe, E.; Puricelli,
L.; Franco, L. H.; Palermo, J.; Meijer, L. Bioorg. Med.
Chem. Lett. 2004, 14, 1703; (b) Polychronopoulos, P.;
Magiatis, P.; Skaltsounis, A.-L.; Myrianthopoulos, V.;
Mikros, E.; Tarricone, A.; Musacchio, A.; Roe, S. M.;
Pearl, L.; Maryse, L.; Greengard, P.; Meijer, L. J. Med.
Chem. 2004, 47, 935; (c) Zapata-Torres, G.; Opazo, F.;
Salgado, C.; Munoz, J. P.; Krautwurst, H.; Mascayano,
C.; Sepulveda-Boza, S.; Maccioni, R. B.; Cassels, B. K.
J. Nat. Prod. 2004, 67, 416; (d) Ortega, M. A.; Montoya,
M. E.; Zarranz, B.; Jaso, A.; Aldana, I.; Leclerc, S.;
Meijer, L.; Monge, A. Bioorg. Med. Chem. 2002, 10, 2177;
(e) Chang, Y. T.; Gray, N. S.; Rosania, G. R.; Sutherlin,
D. P.; Kwon, S.; Norman, T. C.; Sarohia, R.; Leost, M.;
Meijer, L.; Schultz, P. G. Chem. Biol. 1999, 6, 361; (f)
Helal, C. J.; Sanner, M. A.; Cooper, C. B.; Gant, T.;
Adam, M.; Luca, J. C.; Kang, Z.; Kupchinsky, S.;
Ahlijanian, M. K.; Tate, B.; Menniti, F. S.; Kelly, K.;
Peterson, M. Bioorg. Med. Chem. Lett. 2004, 14, 5521.
11. Santora, V.; Askew, B.; Ghose, A.; Hague, A.; Kim, T. S.;
Laber, E.; Li, A.; Lian, B.; Liu, G.; Norman, M. H.;
Smith, L.; Tasker, A.; Tegley, C.; Yang, K. International
Patent WO 02/014311, 2002.
Figure 2. Binding model of compound 17j in the active site of CDK5.
Proposed H-bonding network is shown in green. Carbon atoms of
compound 17j are shown in green, carbon atoms of active site residues
in brown, nitrogen atoms in blue, oxygen in red, and sulfur in yellow.
3,4-dihydro-1H-quinazolin-2-one series, and our origi-
nal hypothesis, the thiazole ring extends into the con-
served hydrophobic pocket lined in part by Phe80 and
forms an edge-to-face van der Waals interaction with
Phe80. The phenyl group of the arylsulfone moiety
provides additional hydrophobic interactions. Interest-
ingly, one of the oxygen atoms of the sulfone moiety
interacts with the Lys33–Asp144 salt bridge by form-
ing a hydrogen bond to the e-NH2 group of Lys33,
while the other oxygen atom forms a potential hydro-
gen bond with the backbone NH of Asp144. This
mode of interaction differs significantly from that of
the pyrid-4-yl group in the co-crystal structure of
CDK2 and inhibitor 1 and provides a rational basis
to explain the observed SAR trends of these quino-
lin-2(1H)-one arylsulfone inhibitors.
To summarize, using active site homology modeling
based on crystallographic data from the acyclic urea
1/CDK2 complex, we rationally designed and synthe-
sized a novel series of quinolin-2(1H)-one derivatives
as potent CDK5 inhibitors. From these studies, we
found that the 4-amino substituent at the quinolin-
2(1H)-one core was well tolerated and the 7-position
was the most permissive for modifications. In our ef-
fort to explore pyrid-4-yl alternatives, we discovered
a series of arylsulfone compounds as potent CDK5
inhibitors. A binding model was developed for an
exemplary compound from this class of compounds
to account for the major binding interactions. Further
investigations toward improving solubility and selec-
tivity of the quinolin-2(1H)-one derivatives will be re-
ported in due course.
12. Hever, G.; Wang, J.; Kuang, R.; Zhang, M.; Jiao, S.;
Louis, J. C.; Magal, E. CDK5 Inhibition as a Target for
Neuroprotection in Rat Model of Middle Cerebral Artery
Occlusion. Society for Neuroscience 33rd Annual Meet-
ing, New Orleans, 2003.
13. Rzasa, R. M.; Kaller, M.; Liu, G.; Magal, E.; Nguyen,
T.; Osslund, T. D.; Powers, D.; Santora, V. J.; Wang,
H.-L.; Xiaoling Xiong, X.; Zhong, W.; Norman, M. H.
14. El Kazzouli, S.; Berteina-Raboin, S.; Mouaddib, A.;
Guillaumet, G. Tetrahedron Lett. 2002, 43, 3193.
´
15. Palacios, F.; Herran, E.; Rubials, G. J. Org. Chem. 1999,
64, 6239.
Acknowledgments
16. Teramoto, S.; Tanaka, M.; Shimizu, H.; Fujioka, T.;
Tabusa, F.; Imaizumi, T.; Yoshida, K.; Fujiki, H.; Mori,
T.; Sumida, T.; Tominaga, M. J. Med. Chem. 2003, 46,
3033.
We are grateful to Dr. Vellarkad Viswanadhan for mod-
eling support and Dr. Ning Xi for proofreading this
manuscript and providing valuable suggestions.