A Novel Purification Method in Organic Synthesis Using Hydrogen Bonding
FULL PAPER
(d, J = 8.5 Hz, 2 H), 7.41–7.30 (m, 3 H), 6.96 (dd, J = 8.8, 2.2 Hz, 130.11, 129.93, 129.28, 128.24, 128.02, 120.70, 119.02, 117.72,
2 H), 6.83 (d, J = 9.1 Hz, 2 H), 5.98–5.89 (m, 2 H), 5.33–5.27 (m, 114.84, 113.78, 112.99, 112.68, 106.47, 69.82, 66.63, 55.33, 47.30,
4 H), 5.01 (s, 2 H), 4.04–4.01 (m, 2 H), 2.39–2.32 (m, 1 H), 1.73– 45.57, 33.09, 29.51, 26.85, 22.69, 14.12, 11.95 ppm. HRMS (FAB):
1.57 (m, 4 H), 1.35–1.24 (m, 4 H), 0.92 (t, J = 7.3 Hz, 3 H), 0.88
calcd. for C41H45N6O8 [M + H]+ 749.3299, found 749.3309. Treat-
ment of compound 23 without further purification with TFA/H2O
(t, J = 7.2 Hz, 3 H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 173.1,
165.0, 158.9, 155.8, 154.8, 147.6, 136.4, 132.3, 131.5, 130.1 (2 C), as described above, gave acid 26 in quantitative yield. A pure sam-
129.5, 128.9, 128.6, 128.4, 128.2 (2 C), 120.9, 120.7, 117.7 (2 C), ple of 26 was obtained after filtration through a short silica plug
115.0 (2 C), 113.8, 106.6, 77.2, 69.8, 69.7, 66.6, 45.4, 32.9, 29.7, (86% yield). FTIR (ATR): ν = 3360, 2950, 2920, 2850, 1718, 1619,
˜
29.3, 26.7, 22.5, 13.9, 11.7 ppm. Without further purification com-
pound 21 (9.8 mg, 14.6 µmol) was dissolved in TFA/H2O (95:5
v/v, 2 mL) and the mixture stirred for 90 min. The solvent was
evaporated, and the residue was taken up in 20 mL of CHCl3. To
the resulting solution 0.50 g of the tagged resin was added
(0.14 mmol AT groups), and the mixture was shaken gently over-
night. After filtering off the resin, the filtrate was concentrated to
1454, 1437, 1260, 1212, 1156, 1044 cm–1. 1H NMR ([D6]DMSO,
400 MHz): δ = 8.99 (t, J = 6.1 Hz, 1 H) 8.60 (d, J = 2.1 Hz, 1 H),
7.86 (dd, J = 9.1, 2.1 Hz, 1 H), 7.23 (t, J = 7.1 Hz, 1 H), 6.96–6.79
(m, 4 H), 4.63 (d, J = 6.1 Hz, 2 H), 3.70 (s, 3 H) ppm. 13C NMR
([D6]DMSO, 75 MHz): δ = 165.8, 159.5, 147.1, 139.5, 135.8, 130.8,
129.7, 128.3, 118.9, 117.4, 115.0, 112.7, 112.4, 56.0, 54 ppm.[33]
give 24 (3.2 mg, Ͼ99%) as a yellow solid. FTIR (ATR): ν = 3343,
˜
Acknowledgments
3101, 2902, 2855, 1675, 1614, 1563, 1537, 1437, 1364, 1277, 1230,
1152, 1083, 932, 759, 703, 543, 521 cm–1. 1H NMR ([D6]DMSO,
400 MHz): δ = 8.65 (t, J = 5.9 Hz, 1 H), 8.58 (d, J = 2.1 Hz, 1 H),
7.91 (dd, J = 9.0, 1.7 Hz, 1 H), 6.98 (d, J = 9.1 Hz, 1 H), 5.93–5.84
(m, 1 H), 5.21–5.13 (m, 2 H), 4.08–4.05 (m, 2 H) ppm. 13C NMR
([D6]DMSO, 75 MHz): δ = 165.8, 147.2, 135.7, 133.8, 130.5, 128.3,
117.1, 116.2, 115.0, 44.5 ppm.[33]
These investigations were supported (in part) by the Netherlands
Research Council for Chemical Sciences (CW) with financial aid
from the Netherlands Technology Foundation (STW).
[1] See, e.g.: a) Handbook of Combinatorial Chemistry (Eds.: K. C.
Nicolaou, R. Hanko, W. Hartwig), Wiley-VCH, Weinheim,
2002; b) Combinatorial Chemistry, 2nd revised ed. (Eds: W.
Bannwarth, B. Hinzen), Wiley-VCH, Weinheim, 2006.
[2] R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149–2154.
[3] G. R. Marshall, J. Pept. Sci. 2003, 9, 534–544.
[4] D. P. Curran, Angew. Chem. Int. Ed. 1998, 37, 1174–1196.
[5] J. Yoshida, K. Itami, Chem. Rev. 2002, 102, 3693–3716.
[6] a) I. T. Horváth, J. Rábai, Science 1994, 266, 72–75; b) I. T.
Horváth, Acc. Chem. Res. 1998, 31, 641–650.
[7] a) D. P. Curran, M. Hoshino, J. Org. Chem. 1996, 61, 6480–
6481; b) D. P. Curran, S. Hadida, J. Am. Chem. Soc. 1996, 118,
2531–2531.
[8] A. M. Hay, S. Hobbs-Dewitt, A. A. MacDonald, R. Ramage,
Tetrahedron Lett. 1998, 39, 8721–8724.
[9] a) R. Ramage, G. Raphy, Tetrahedron Lett. 1992, 33, 385–388;
b) R. Ramage, H. R. Swenson, K. T. Shaw, Tetrahedron Lett.
1998, 39, 8715–8718.
[10] R. Ramage, F. O. Wahl, Tetrahedron Lett. 1993, 34, 7133–7136.
[11] S. Zhang, K. Fukase, S. Kusumoto, Tetrahedron Lett. 1999, 40,
7479–7483.
3-Nitro-4-(prop-2-ynylamino)benzoic Acid (25): Reaction of 20 ac-
cording to the general procedure with propargylamine provided 22.
FTIR (ATR): ν = 2954, 2924, 2868, 1718, 1692, 1649, 1619, 1571,
˜
1511, 1316, 1216, 1113, 1009, 910, 819, 806, 741 cm–1. 1H NMR
(CDCl3, 400 MHz): δ = 13.12 (s, 1 H), 12.32 (s, 1 H), 12.27 (s, 1
H), 8.91 (d, J = 1.7 Hz, 1 H), 8.43 (br. t, J = 5.3 Hz, 1 H), 8.14
(dd, J = 8.9, 1.4 Hz, 1 H), 7.72 (d, J = 8.3 Hz, 2 H), 7.41 (d, J =
7.7 Hz, 2 H), 7.37 (d, J = 8.1 Hz, 2 H), 6.98 (d, J = 8.6 Hz, 2 H),
5.94 (s, 1 H), 5.29 (s, 2 H), 5.06 (s, 2 H), 4.17 (d, J = 5.7 Hz, 2 H),
2.37–2.32 (m, 2 H), 1.72–1.58 (m, 4 H), 1.35–1.24 (m, 4 H), 0.92
(t, J = 7.2 Hz, 3 H), 0.89 (t, J = 7.1 Hz, 3 H) ppm. 13C NMR
(CDCl3, 75 MHz): δ = 172.66, 164.53, 158.60, 155.49, 154.47,
146.29, 137.63, 136.32, 132.16, 130.26, 129.97, 129.17, 128.02,
120.73, 115.01, 114.88, 113.55, 106.48, 77.98, 72.94, 69.83, 67.68,
66.74, 45.59, 33.11, 32.94, 29.87, 29.52, 26.86, 22.70, 14.13,
11.96 ppm. HRMS (FAB): calcd. for C36H39N6O7 [M + H]+
667.2880, found 667.2876. Direct treatment of compound 22 with
TFA/H2O as described above, gave acid 25 in quantitative yield.
[12] S. D. Lepore, Tetrahedron Lett. 2001, 42, 6437–6439.
[13] S. V. Ley, A. Massi, F. Rodríguez, D. C. Horwell, R. A.
Lewthwaite, M. C. Pritchard, A. M. Reid, Angew. Chem. Int.
Ed. 2001, 40, 1053–1055.
[14] J. Siu, I. R. Baxendale, R. A. Lewthwaite, S. V. Ley, Org. Bi-
omol. Chem. 2005, 3, 3140–3160.
[15] C. Palomo, J. M. Aizpurua, I. Loinaz, M. J. Fernandez-Berridi,
L. Irusta, Org. Lett. 2001, 3, 2361–2364.
[16] S.-Q. Zhang, K. Fukase, M. Izumi, Y. Fukase, S. Kusumoto,
Synlett 2001, 590–596.
FTIR (ATR): ν = 3356, 3291, 3084, 2958, 2816, 1675, 1610, 1563,
˜
1532, 1433, 1411, 1273, 1217, 1156, 923, 764, 681, 646 cm–1. 1H
NMR ([D6]DMSO, 400 MHz): δ = 8.69 (t, J = 5.9 Hz, 1 H), 8.62
(d, J = 2.1 Hz, 1 H), 8.04 (dd, J = 9.0, 2.0 Hz, 1 H), 7.16 (d, J =
9.1 Hz, 1 H), 4.28 (dd, J = 5.9, 2.4 Hz 2 H), 3.25 (t, J = 2.4 Hz, 1
H) ppm. 13C NMR ([D6]DMSO, 75 MHz): δ = 165.8, 146.2, 135.9,
131.2, 128.2, 117.9, 115.0, 79.9, 74.3, 32.0 ppm. HRMS (FAB):
calcd. for C10H9N2O4 [M + H]+ 221.0562, found 221.0559.
4-[(4-Methoxybenzyl)amino]-3-nitrobenzoic Acid (26): Reaction of
20 according to the general procedure with (p-methoxybenzyl)-
[17] Y. Fukase, S.-Q. Zhang, K. Iseki, M. Oikawa, K. Fukase, S.
Kusumoto, Synlett 2001, 1693–1698.
amine provided 23. FTIR (ATR): ν = 3373, 3045, 2954, 2829, 1697,
˜
[18] S. K. Chang, A. D. Hamilton, J. Am. Chem. Soc. 1988, 110,
1318–1319.
1649, 1618, 1576, 1511, 1325, 1264, 1217, 1109, 1009, 910, 798,
737 cm–1. H NMR (CDCl3, 400 MHz): δ = 13.12 (s, 1 H), 12.31 [19] In ref.[17], Fukase describes that large apolar compounds could
1
not be abstracted from a solution in chloroform. A solvent
switch to toluene was necessary to obtain the product.
[20] S. H. M. Söntjens, R. P. Sijbesma, M. H. P. Van Genderen,
E. W. Meijer, J. Am. Chem. Soc. 2000, 122, 7487–7493.
[21] B. W. T. Gruijters, M. A. C. Broeren, F. L. van Delft, R. P.
Sijbesma, P. H. H. Hermkens, F. P. J. T. Rutjes, Org. Lett. 2006,
8, 3163–3166.
[22] a) F. H. Beijer, R. P. Sijbesma, H. Kooijman, A. L. Spek, E. W.
Meijer, J. Am. Chem. Soc. 1998, 120, 6761–6769; b) R. P.
Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer,
(s, 1 H), 12.27 (s, 1 H), 8.91 (d, J = 1.5 Hz, 1 H), 8.70 (br. t, J =
5.5 Hz, 1 H), 8.00 (dd, J = 9.0, 2.0 Hz, 1 H), 7.72 (d, J = 8.4 Hz,
2 H), 7.40 (d, J = 8.4 Hz, 2 H), 7.35 (d, J = 8.5 Hz, 2 H), 7.30–
7.28 (m, 1 H), 6.96 (d, J = 8.4 Hz, 2 H), 6.92–6.82 (m, 4 H), 5.94
(s, 1 H), 5.26 (s, 2 H), 5.05 (s, 2 H), 4.55 (d, J = 5.6 Hz, 2 H), 3.79
(s, 3 H), 2.38–2.32 (m, 1 H), 1.75–1.58 (m, 4 H), 1.43–1.24 (m, 4
H), 0.92 (t, J = 7.3 Hz, 3 H), 0.88 (t, J = 7.2 Hz, 3 H) ppm. 13C
NMR (CDCl3, 75 MHz): δ = 172.65, 164.60, 159.84, 158.57,
155.48, 154.49, 147.22, 137.80, 137.62, 136.25, 132.15, 131.48,
Eur. J. Org. Chem. 2007, 4197–4204
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4203