Z. Chu, R. Tong, Y. Yang et al.
Chinese Chemical Letters 32 (2021) 1–4
[6] (a) T.J. Nelson, M.K. Sun, C. Lim, et al., J. Alzheimer’s Dis. 58 (2017) 521–535;
(b) T. Sarajärvi, M. Jäntti, K.M.A. Paldanius, et al., Neuropharmacology 141
(2018) 76–88;
(c) K. Murakami, M. Yoshimura, S. Nakagawa, et al., Int. J. Mol. Sci. 21 (2020)
1179–1191.
[7] (a) M.D. Marsden, B.A. Loy, X.M. Wu, et al., PLoS Pathog. 13 (2017)e1006575;
(b) M.Z. Zhao, E.D. Crignis, C. Rokx, et al., Pharmacol. Res. 139 (2019) 524–534;
(c) E.F. Heffern, R. Ramani, G. Marshall, et al., J. Virus Erad. 5 (2019) 84–91;
(d) A. Proust, C. Barat, M. Leboeuf, et al., J. Glia 68 (2020) 2212–2227;
(e) B.X. Li, H. Zhang, Y. Liu, et al., Sci. Rep. 10 (2020) 3511–3522.
[8] J.M. Ketcham, I. Volchkov, T.Y. Chen, et al., J. Am. Chem. Soc. 138 (2016) 13415–
13423.
[9] (a) B.M. Trost, H. Yang, O.R. Thiel, et al., J. Am. Chem. Soc. 129 (2007) 2206–
2207;
(b) N. Kedei, M.B. Kraft, G.E. Keck, et al., J. Nat. Prod. 78 (2015) 896–900;
(c) D. Staveness, R. Abdelnabi, K.E. Near, et al., J. Nat. Prod. 79 (2016) 680–684;
(d) D.O. Baumann, K.M. McGowan, N. Kedei, et al., J. Org. Chem. 81 (2016)
7862–7883;
(e) P.R. Mears, S. Hoekman, C.E. Rye, et al., Org. Biomol. Chem. 17 (2019) 1487–
1505;
(f) M.B. Kraft, Y.B. Poudel, N. Kedei, et al., J. Am. Chem. Soc. 136 (2014) 13202–
13208;
(g) I.P. Andrews, J.M. Ketcham, P.M. Blumberg, et al., J. Am. Chem. Soc. 136
(2014) 13209–13216;
(h) J.L. Sloane, N.L. Benner, K.N. Keenan, et al., Proc. Natl. Acad. Sci. U. S. A. 117
Scheme 4. Cyclization of 3 to DHP 2. Reaction conditions: 3 (0.2 mmol), PTSA
(0.002 mmol) and 4 Å MS (100 mg) in 2 mL of CHCl3 at 80 ꢀC for 16 h. Isolated yields
after purification by silica gel column chromatography.
(2020) 10688–10698;
(i) C. Hardman, S. Ho, A. Shimizu, Nat. Commun. 11 (2020) 1879–1889.
[10] (a) G.E. Keck, Y.B. Poudel, T.J. Cummins, et al., J. Am. Chem. Soc.133 (2011) 744–
747;
(b) P.A. Wender, C.T. Hardman, S. Ho, et al., Science 358 (2017) 218–223;
(c) D.A. Evans, P.H. Carter, E.M. Carreira, et al., Angew. Chem. Int. Ed. 37 (1998)
2354–2359;
(d) D.A. Evans, P.H. Carter, E.M. Carreira, et al., J. Am. Chem. Soc. 121 (1999)
7540–7552;
(e) K. Ohmori, Y. Ogawa, T. Obitsu, et al., Angew. Chem. Int. Ed. 39 (2000) 2290–
2294;
(f) B.M. Trost, Y.L. Wang, A.K. Buckl, et al., Science 368 (2020) 1007–1011;
(g) M. Kageyama, T. Tamura, M.H. Nantz, et al., J. Am. Chem. Soc. 112 (1990)
7407–7408;
(h) Y. Lu, S.K. Woo, M.J. Krische, J. Am. Chem. Soc. 133 (2011) 13876–13879;
(i) S. Manaviazar, M. Frigerio, G.S. Bhatia, et al., Org. Lett. 8 (2006) 4477–4480;
(j) Y.B. Zhang, Q.Y. Guo, X.W. Sun, et al., Angew. Chem. Int. Ed. 57 (2018) 942–
946;
Scheme 5. Synthesis of 7.
(k) P.A. Wender, A.J. Schrier, J. Am. Chem. Soc. 133 (2011) 9228–9231;
(l) B.M. Trost, G. Dong, Nature 456 (2008) 485–488;
(m) B.M. Trost, G. Dong, J. Am. Chem. Soc. 132 (2010) 16403–16416.
[11] (a) P. Knochel, R.D. Singer, Chem. Rev. 93 (1993) 2117–2188;
(b) A. Alexakis, J.E. Bäckvall, N. Krause, et al., Chem. Rev. 108 (2008) 2796–
2823;
(c) F. Zhou, X. Hu, W. Zhang, et al., Org. Chem. Front. 5 (2018) 3579–3584;
(d) J.A. Shin, J. Kim, H. Lee, et al., J. Org. Chem. 84 (2019) 4558–4565;
(e) Y. Ouyang, Y. Peng, W.D.Z. Li, Tetrahedron 75 (2019) 4486–4496.
[12] (a) A. Krasovskiy, C. Duplais, B.H. Lipshutz, Org. Lett. 12 (2010) 4742–4744;
(b) C. Duplais, A. Krasovskiy, B.H. Lipshutz, Organometallics 30 (2011) 6090–
6097;
Science and Technology Major Project of the Ministry of Science
and Technology of the People’s Republic of China (No.
2018ZX09711001-005-004), and the Fundamental Research Funds
for the Central Universities (No. 2012017yjsy210). The authors
thank Mr. Wenqin Yang for his invaluable help in this work.
Appendix A. Supplementary data
Supplementary material related to this article can be found, in
(c) B.H. Lipshutz, S. Ghorai, W.W.Y. Leong, et al., J. Org. Chem. 76 (2011) 5061–
5073;
(d) B.H. Lipshutz, S.L. Huang, W.W.Y. Leong, et al., J. Am. Chem. Soc. 134 (2012)
19985–19988;
the
online
version,
at
(e) H. Pang, Y. Wang, F. Gallou, et al., J. Am. Chem. Soc. 141 (2019) 17117–17124.
[13] (a) C. Petrier, C. Dupuy, J.L. Luche, Tetrahedron Lett. 27 (1986) 3149–3152;
(b) J.L. Luche, C. Allavena, Tetrahedron Lett. 29 (1988) 5369–5372;
(c) J.L. Luche, C. Allavena, C. Petrier, Tetrahedron Lett. 29 (1988) 5373–5374;
(d) C. Dupuy, C. Petrier, L.A. Sarandeses, et al., Synth. Commun. 21 (1991) 643–
651;
References
[1] (a) K.J. Hale, S. Manaviazar, Chem. Asian J. 5 (2010) 704–754;
(b) X.R. Tian, H.F. Tang, X.L. Tian, et al., Future Med. Chem.10 (2018) 1497–1514;
(c) R. Wu, H. Chen, N. Chang, et al., Chem. Eur. J. 26 (2020) 1166–1195;
(d) R. Raghuvanshi, S.B. Bharate, Curr. Top. Med. Chem. 20 (2020) 1124–1135.
[2] G.R. Pettit, C.L. Herald, D.L. Doubek, et al., J. Am. Chem. Soc. 104 (1982) 6846–
6848.
[3] (a) M.R. Farlow, R.E. Thompson, L.J. Wei, et al., J. Alzheimers Dis. 67 (2019) 555–
570;
(b) J. Wang, Z. Wang, Y. Sun, et al., Biochem. Biophys. Res. Commun. 512 (2019)
473–478.
[4] K.J. Way, N. Katai, G.L. King, Diabet. Med. 18 (2001) 945–949.
[5] K. Mizutani, S. Sonoda, H. Wakita, et al., Neuroreport. 27 (2016) 659–664.
(e) L.A. Sarandeses, A. Mourinoband, J.L. Luche, J. Chem, Soc. Chem. Commun.
11 (1992) 798–799.
[14] (a) C.J. Li, Chem. Rev. 105 (2005) 3095–3165;
(b) C.J. Li, L. Chen, Chem. Soc. Rev. 35 (2006) 68–82;
(c) Y. Kim, C.J. Li, Green. Synth. Catal. 1 (2020) 1–11.
[15] J.S. Yadav, M.S. Reddy, A.R. Prasad, Tetrahedron Lett. 46 (2005) 2133–2136.
[16] J.E. Baldwin, R.C. Thomas, L.I. Kruse, et al., J. Org. Chem. 42 (1977) 3846–3852.
4