R. Liboska et al. / Tetrahedron Letters 49 (2008) 5629–5631
5631
HO
HO
NH2 H3PO2
H
O
H
O
H
N
H
N
P
BnO
P
a
b, c
O
CH3
CH3
d
14
13
O
O
O
O
HO
HO
O
HO
O
O
H
N
O
H2N
P
BnO
P
H2N
P
HN
P
OCH3
OCH3 f, g
+
e
OH
OH
O
CH3
CH3
CH3
18
CH3
16
17
15
Scheme 2. Reagents, conditions, and yields: (a) valeraldehyde, THF, reflux for 2 h (75%); (b) 48% HBr, reflux for 8 h, then propylene oxide, ethanol (69%); (c) benzyl
chloroformate, Na2CO3, water and dioxane, 0 °C 2 h then rt overnight (93%); (d) TMSCl, TEA, methyl bromoacetate, rt overnight (80%); (e) HCOOꢃNH4þ, 10% Pd/C, methanol, rt
overnight (20% for 16); (f) NaOH, methanol and water, rt overnight (79%); (g) HCOOꢃNH4þ, 10% Pd/C, methanol, rt overnight (48%).
4. Yiotakis, A.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Dive, V. Curr. Org. Chem.
2004, 8, 1135.
which gave intermediate 15 upon Arbuzov reaction14 with methyl
5. Collinsova, M.; Jiracek, J. Curr. Med. Chem. 2000, 7, 629.
with benzyl chloroformate afforded the Z-protected derivative 14,
bromoacetate. For reference, the NMR spectral data for compound
15 are provided.11 The analogous Arbuzov reaction was also per-
formed with the methionine analogue of 14 but this attempt was
unsuccessful, probably due to the presence of a sulfur atom. Cata-
lytic transfer hydrogenation17 of 15 afforded the desired methyl
ester 16 along with a considerable amount of cyclic by-product
17. However, alkaline hydrolysis of 15 followed by catalytic trans-
fer hydrogenation afforded target compound 18.
The synthesis of methionine-derived phosphinic pseudopep-
tides is difficult due to the presence of a side-chain sulfur atom.
However, phosphinopeptides and phosphonopeptides can be pre-
pared by BOP-catalyzed coupling using N-protected synthons
without protection of the phosphoryl moiety. We successfully used
this strategy for the synthesis of several methionine-derived phos-
phinic pseudopeptides as potential inhibitors of aminopeptidases.
We also prepared a new type of pseudopeptide derived from the
phosphinic analogue of norleucine with a –PO(OH)–CH2–COOR
moiety. The target compounds 7, 9, 11, 12, 16, and 18 will be tested
for their inhibitory activities toward leucine and methionine
aminopeptidases.
6. Mitra, S.; Dygas-Holz, A. M.; Jiracek, J.; Zertova, M.; Zakova, L.; Holz, R. C. Anal.
Biochem. 2006, 357, 43.
7. Catch, J. R.; Cook, A. M.; Graham, A. R.; Heilbron, I. J. Chem. Soc. 1947, 1609.
8. Zhukov, Y. N.; Khomutov, A. R.; Osipova, T. I.; Khomutov, R. M. Russ. Chem. Bull.
1999, 48, 1348.
9. Yiotakis, A.; Vassiliou, S.; Jiracek, J.; Dive, V. J. Org. Chem. 1996, 61, 6601.
10. Georgiadis, D.; Matziari, M.; Yiotakis, A. Tetrahedron 2001, 57, 3471.
11. Compound 10a: 1H NMR (600 MHz, DMSO): 1.79 (2H, m, P–CH2); 1.79 and 1.97
(2ꢂ 1H, 2ꢂ m, C–CH2–C); 2.04 (3H, s, S–CH3); 2.40 and 2.46 (2ꢂ 1H, 2ꢂ m,
CH2–CO); 2.38 and 2.55 (2ꢂ 1H, 2ꢂ m, S–CH2); 3.81 (1H, m, CH–P); 4.23 (1H,
dd, J = 7.2 and 7.0, CH(Fmoc)); 4.31 (1H, dd, J = 10.6 and 7.2, O–CHa); 4.38 (1H,
dd, J = 10.6 and 7.0, O–CHb); 7.32 (1H, m, arom.H); 7.34 (1H, m, arom.H); 7.43
(2H, m, arom.H); 7.64 (1H, d, J = 9.4, NH); 7.73 (1H, m, arom.H); 7.74 (1H, m,
arom.H); 7.90 (2H, m, arom.H). 13C NMR (150.9 MHz, DMSO): 14.83 (S–CH3);
21.99 (d, J(C,P) = 90.3, P–CH2); 26.63 (d, J(C,P) = 2.8, CH2–CO); 27.15 (d,
J(C,P) = 2.3, C–CH2–C); 30.25 (d, J(C,P) = 13.1, S–CH2); 47.02 (CH– (Fmoc));
49.13 (d, J(C,P) = 106.0, P–CH); 65.83 (O–CH2); 120.40(2C), 125.48, 125.55,
127.31, 127.35, 127.92, 127.94, 141.00, 141.01, 143.94 and 144.15 (12 arom.C);
156.59 (d, J(C,P) = 3.8, O–CO–N); 173.90 (d, J(C,P) = 15.9, COOH). Compound
10b: 1H NMR (600 MHz, DMSO): 1.17 (3H, d, J = 7.0, CH3); 1.56 and 2.04 (2ꢂ
1H, 2ꢂ m, P–CH2); 1.78 and 1.96 (2ꢂ 1H, 2ꢂ m, C–CH2–C); 2.02 (3H, s, S–CH3);
2.38 and 2.53 (2ꢂ 1H, 2ꢂ m, S–CH2); 2.67 (1H, m, CH–CO); 3.78 (1H, m, CH–P);
4.22 (1H, t, J = 7.1, CH(Fmoc)); 4.30 (1H, dd, J = 10.6 and 7.1, O–CHa); 4.33 (1H,
dd, J = 10.6 and 7.1, O–CHb); 7.31 (1H, m, arom.H); 7.32 (1H, m, arom.H); 7.41
(2H, m, arom.H); 7.63 (1H, d, J = 9.4, NH); 7.71 (2H, m, arom.H); 7.89 (2H, m,
arom.H). 13C NMR (150.9 MHz, DMSO): 14.80 (S–CH3); 18.73 (d, J(C,P) = 5.8, C–
CH3); 27.16 (d, J(C,P) = 2.7, C–CH2–C); 29.73 (d, J(C,P) = 89.2, P–CH2); 30.22 (d,
J(C,P) = 2.9, S–CH2); 33.31 (d, J(C,P) = 3.3, CH–CO); 46.94 (CH– (Fmoc)); 49.86
(d, J(C,P) = 105.6, P–CH); 65.83 (O–CH2); 120.36(2C), 125.47, 125.51, 127.27,
127.30, 127.88(2C), 140.96(2C), 143.94 and 144.11 (12 arom.C); 156.43 (d,
J(C,P) = 3.8, O–CO–N); 176.89 (d, J(C,P) = 12.0, COOH). Compound 15: 1H NMR
(600 MHz, CDCl3): 0.87 (3H, t, J = 7.0, CH3); 1.28 and 1.34 (2ꢂ 1H, 2ꢂ m, CH2);
1.34 and 1.44 (2ꢂ 1H, 2ꢂ m, CH2); 1.54 and 1.84 (2ꢂ 1H, 2ꢂ m, CH2); 4.13 (1H,
m, CH–P); 2.98 (1H, dd, J = 14.8 and 16.8, P–CHa); 3.01 (1H, dd, J = 14.8 and
15.8, P–CHb); 3.67 (3H, s, COOCH3); 5.09 and 5.14 (2ꢂ 1H, 2ꢂ d, J = 12.3, O–
CH2); 5.39 (1H, d, J = 10.2, NH); 7.30–7.35 (5H, m, C6H5); 10.33 (1H,br s, P–OH).
13C NMR (150.9 MHz, CDCl3): 13.84 (CH3); 22.15 (CH2); 27.68 (CH2); 27.84 (d,
J(C,P) = 11.9, CH2); 34.94 (d, J(C,P) = 82.1, P–CH2); 50.08 (d, J(C,P) = 111.7, P–
CH); 52.63 (OCH3); 67.19 (O–CH2); 127.97(2C), 128.16, 128.48(2C) and 136.14
(5 arom.C); 156.35 (d, J(C,P) = 5.9, O–CO–N); 166.56 (d, J(C,P) = 4.4, COOCH3).
12. Fields, G. B.; Noble, R. L. Int. J. Pept. Prot. Res. 1990, 35, 161.
Acknowledgments
This project was supported by Grant 203/06/1405 (to J.J.) from
the Grant Agency of the Czech Republic, by the Chemical Genetics
Consortium No. LC060777 of the Ministry of Education, Youth and
Sports of the Czech Republic (to J.J.) and by Research Project Z4 055
0506 of the Academy of Sciences of the Czech Republic.
References and notes
1. Kafarski, P.; Lejczak, B. In Aminophosphinic and Aminophosphonic Acids.
Chemistry and Biological Activity; Kukhar, V. P., Hudson, H. R., Eds.; Synthesis
of Phosphono- and Phosphinopeptides; John Wiley & Sons Ltd: Chichester,
2000; pp 173–203.
13. Raguin, O.; Fournie-Zaluski, M. C.; Romieu, A.; Pelegrin, A.; Chatelet, F.;
Pelaprat, D.; Barbet, J.; Roques, B. P.; Gruaz-Guyon, A. Angew. Chem., Int. Ed.
2005, 44, 4058.
14. Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J. Med. Chem. 1989, 32,
1652.
15. Picha, J.; Budesinsky, M.; Sanda, M.; Jiracek, J. Tetrahedron Lett. 2008, 49, 4366.
16. Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. J. Chem. Soc., Perkin Trans. 1 1984,
2845.
2. Kafarski, P.; Lejczak, B. In Aminophosphinic and Aminophosphonic Acids.
Chemistry and Biological Activity; Kukhar, V. P., Hudson, H. R., Eds.; The
Biological Activity of Phosphono- and Phosphinopeptides; John Wiley & Sons
Ltd: Chichester, 2000; pp 407–442.
3. Dive, V.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Beau, F.; Cuniasse, P.;
Yiotakis, A. Cell. Mol. Life Sci. 2004, 61, 2010.
17. Anwer, M. K.; Spatola, A. F. Synthesis 1980, 929.