C O M M U N I C A T I O N S
orbital (LMO)20 representation of the B-B σ bond is shown in the
Supporting Information). Natural bond orbital (NBO) electron
occupancies of the B-B σ- and π-bonding orbitals in 3a are 1.943
and 1.382, respectively. The Wiberg and NLMO/NPA B-B bond
indices, 1.408 and 1.656, respectively, also document the BdB
double bond character in 3a.
The computed boron-boron Wiberg bond indexes along the
OC(H)2B-B(H)2CO (ethane-like), OC(H)BdB(H)CO ((IV), L: )
CO) (ethene-like), and OCBBCO (ethyne-like) series, 0.870, 1.308,
and 1.953, respectively, are instructive. The 1.0, 2.0, 3.0 unit bond-
order values of the hydrocarbon series are not to be expected for
the corresponding boron-boron analogues owing to the resonance
contributions of Lewis structures. Nevertheless, the single-, double-,
and triple-bond descriptions of boron-boron bonds discussed here
are appropriate.
In summary, we have synthesized and characterized the first
stable neutral diborene and computationally probed the nature of
the novel boron-boron double bond. Related studies on the
chemistry of boron-boron multiple bonds are ongoing.
Figure 2. Molecular structure of 3 (thermal ellipsoids represent 30%
probability; hydrogen atoms on carbon omitted for clarity). Selected bond
distances (Å) and angles (deg): B(1)-B(2) 1.561(18), B(1)-C(1) 1.543(15),
B(1)-H(1) 1.14(2), B(2)-C(28) 1.532(15), B(2)-H(2) 1.13(2); B(2)-
B(1)-C(1) 128.3(12), B(2)-B(1)-H(1) 124(4), C(1)-B(1)-H(1) 107(4),
B(1)-B(2)-C(28) 126.1(12), B(1)-B(2)-H(2) 128(4), C(28)-B(2)-H(2)
105(4).
Acknowledgment. We are grateful to the National Science
Foundation (Grants CHE-0608142 and CHE-0209857) for support.
Note Added after ASAP Publication. After this paper was
published ASAP September 21, 2007, production errors were fixed
in the graphics showing structures (I)-(IV) and eq 1. The corrected
version was published ASAP September 25, 2007.
Figure 3. Representation of the HOMO and HOMO-1 orbitals of 3a.
three-coordinate boron atoms in 3 adopt trigonal planar geometries.
The most notable feature of 3, however, is the BdB bond. The
BdB bond distance of 1.560(18) Å (av) in 3 is not only
considerably shorter than the B-B distance in 2 (1.828(4) Å), but
also shorter than those reported for [Mes2BB(Mes)Ph]2- (1.636-
(11) Å)4 and for [{Ph(Me2N)BB(NMe2)Ph}]2- (1.627 Å (av)),5
which purportedly contained a “strong B-B π-bond”. Furthermore,
the BdB bond distance in 3 compares well to those in dianionic
tetra(amino)diborates (1.566(9) to 1.59(1) Å)6 and to the computed
BdB bond lengths for the OC(H)BdB(H)CO ((IV), L: ) CO)
analogue (1.590 Å)9c and for diborene(2), (III)3 (1.498-1.515 Å).
The computed B-B distance of 1.45 Å reported for OCBBCO, a
compound “with some triple bond character”, is shorter.2,9c Notably,
the B-B bond distance difference of 0.27 Å between 2 and 3 is
comparable to the corresponding difference (about 0.2 Å) between
ethane and ethene. Likewise, the C-C bond distance difference of
0.1 Å between ethene and ethyne corresponds to the difference
between 3 and OCBBCO (0.11 Å).2,9c Thus, the structural details
of 3 are consistent with a BdB double bond.
The nature of 3 was investigated by performing B3LYP/6-
311+G** DFT computations20 on the simplified R(H)BdB(H)R
(R ) :C(NHCH)2) model, 3a (Figure 3). Both 3a and the OC(H)Bd
B(H)CO ((IV), L: ) CO) analogue9c are planar and have C2h
symmetry, whereas the corresponding R moieties in 3 are twisted
because of the greater steric demands of the very bulky N(aryl)
ligands. The computed B-B bond lengths in 3a (1.591 Å) and (IV)
(L: ) CO) (1.590 Å)9c are virtually identical and are close to the
error bound of the corresponding experimental distance of 3
(1.561 (18) Å). The B-C length (1.547 (15) Å (av)) of 3 also agrees
with the computed value (1.531 Å) for 3a. Perhaps due to reduced
steric repulsion between the ligands, the B-B-C bond angle in
3a (120°) is less than the average value in 3, 126.7(12)°.
Supporting Information Available: Complete ref 20, full details
of the syntheses, computations, and X-ray crystal determination,
including the cif files. This material is available free of charge via the
References
(1) Cowley, A. H. J. Organomet. Chem. 2004, 689, 3866-3872.
(2) Zhou, M.; Tsumori, N.; Li, Z.; Fan, K.; Andrews, L.; Xu, Q. J. Am. Chem.
Soc. 2002, 124, 12936-12937.
(3) Kaufmann, E.; Schleyer, P. v. R. Inorg. Chem. 1988, 27, 3987-3992.
(4) Moezzi, A.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1992,
114, 2715-2717.
(5) Moezzi, A.; Bartlett, R. A.; Power, P. P. Angew. Chem., Int. Ed. 1992,
31, 1082-1083.
(6) Noth, H.; Knizek, J.; Ponikwar, W. Eur. J. Inorg. Chem. 1999, 1931-
1937.
(7) (a) Dill, J. D.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1975,
97, 3402-3409. (b) Krogh-Jespersen, K.; Cremer, D.; Dill, J. D.; Pople,
J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 2589-2594.
(8) Maier, C.-J.; Pritzkow, H.; Siebert, W. Angew. Chem., Int. Ed. 1999, 38,
1666-1668.
(9) (a) Wu, H.-S.; Qin, X.-F.; Xu, X.-H.; Jiao, H. J.; Schleyer, P. v. R. J.
Am. Chem. Soc. 2003, 125, 4248-4249. (b) Wu, H.-S.; Jiao, H. J.; Wang,
Z. X.; Schleyer, P. v. R. J. Am. Chem. Soc. 2005, 127, 2334-2338. (c)
Wang, Z.-X.; Chen, Z.; Jiao, H. J.; Schleyer, P. v. R. J. Theoret. Comput.
Chem. 2005, 4, 669-688. (d) Qin, X.-F.; Wu, H.-S.; Jiao, H. J. J. Mol.
Struct. (THEOCHEM) 2007, 810, 135-141. (e) Qin, X.-F.; Wu, H.-S.;
Jiao, H. J. J. Mol. Model. 2007, 13, 927-935.
(10) (a) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815-1828. (b)
Arduengo, A. J., III Acc. Chem. Res. 1999, 32, 913-921.
(11) See the Supporting Information for synthetic and crystallographic details.
(12) Li, X.-W.; Su, J.; Robinson, G. H. Chem. Commun. 1996, 2683-2684.
(13) Malatesta, V.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103, 609-614.
(14) Smith, J. G.; Ho, I. J. Org. Chem. 1972, 37, 4260-4264.
(15) Cheng, T. C.; Headley, L.; Halasa, A. F. J. Am. Chem. Soc. 1971, 93,
1502-1503.
(16) Garst, J. F. Acc. Chem. Res. 1971, 4, 400-406.
(17) Moezzi, A.; Olmstead, M. M.; Power, P. P. J. Chem. Soc., Dalton Trans.
1992, 2429-2434.
(18) Grigsby, W. J.; Power, P. P. J. Am. Chem. Soc. 1996, 118, 7981-7988.
(19) Pilz, M.; Allwohn, J.; Willershausen, P.; Massa, W.; Berndt, A. Angew.
Chem., Int. Ed. 1990, 29, 1030-1032.
(20) Computations: The structure of 3a was optimized at the B3LYP/6-
311+G** DFT level with the Gaussian 03 program (computational details
are in the Supporting Information): Frisch, M. J.; et al. Gaussian 03,
revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
The HOMO of 3a (Figure 3) is mainly a B-B π-bonding orbital
involving the overlap of boron 2p orbitals, while the HOMO-1 has
mixed B-B and B-H σ-bonding character. (A localized molecular
JA075932I
9
J. AM. CHEM. SOC. VOL. 129, NO. 41, 2007 12413