10.1002/anie.201806956
Angewandte Chemie International Edition
COMMUNICATION
Preliminary kinetic studies support a 1st order dependency
with respect to all three components (vinyl heterocycle, aniline
nucleophile, and catalyst), consistent with the DFT analysis (see
[4]
[5]
[6]
For a review of asymmetric hydrogenation of enamines, see: J.-H. Xie,
S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111, 1713–1760.
T. E. Müller, K. C. Hultzsch, M. Yus, H. Foubelo, M. Tada, Chem. Rev.
2008, 108, 3795–3892.
ESI). Finally, 31P NMR and HRMS analysis supported
a
During the preparation of this manuscript, two reports of catalytic
preferential substrate/catalyst pairing (i.e., 1•3) rather than
product/catalyst (i.e., 4a•3), consistent with the turnover
hypothesis (see ESI).
enantioselective preparation of α-stereocentres using
CPA/photoredox catalysis approach were reported. See: (a) R. S. J.
Proctor, H. J. Davis, R. J. Phipps, Science
a combined
DOI:10.1126/science.aar6376; (b) Y. Yin, Y. Dai, H. Jia, J. Li, L. Bu, B.
Qiao, X. Zhao, Z. Jiang, J. Am. Chem. Soc. 2018, 140, 6083–6087.
For examples, see: (a) H. E. Reich, R. Levine, J. Am. Chem. Soc. 1955,
77, 5434–5436; (b) H. E. Reich, R. Levine, R. J. Am. Chem. Soc. 1955,
77, 4913–4915.
In summary, we have developed
a
CPA-catalyzed
enantioselective synthesis of α-chiral azaheteroaryl ethylamines
via dearomatizing aza-Michael/rearomatizing asymmetric
protonation. DFT and kinetic studies have given insight into the
mechanism of the reaction, which will guide future applications
of this approach towards the design and synthesis of
functionalized heterocyclic scaffolds.
[7]
[8]
[9]
For a recent CPA-catalyzed conjugate addition of a nucleophilic carbon
radical to vinyl azaheterocycles, see ref 6b.
For previous organocatalyzed conjugate addition to vinyl heterocycles,
see refs 3b and 3e.
[10] For reviews of chiral counterions in catalysis, see: (a) T. Akiyama, K.
Mori, Chem. Rev. 2015, 115, 9277–9306; (b) M. Mahlau, B. List, Angew.
Chem. Int. Ed. 2013, 52, 518–533; Angew. Chem. 2013, 125, 540–556;
(c) K. Brak, E. N. Jacobsen, Angew. Chem. Int. Ed. 2013, 52, 534–561;
Angew. Chem. 2013, 125, 558–588; (d) D. Kampen, C. M. Reisinger, B.
List, Top. Curr. Chem. 2010, 291, 395–456; (e) T. Akiyama, Chem. Rev.
2007, 107, 5744–5758.
Acknowledgements
We thank the Leverhulme Trust for funding (C.X.; RPG-2015-
308) and GSK for a PhD studentship (C.W.M.). We thank the
EPSRC UK National Mass Spectrometry Facility at Swansea
University for analyses.
[11] For reviews of asymmetric protonation, see: (a) J. T. Mohr, A. Y. Hong,
B. M. Stoltz, Nat. Chem. 2009, 1, 359–369; (b) S. Oudeyer, J.-F. Brière,
V. Levacher, Eur. J. Org. Chem. 2014, 6103–6119; (c) J. P. Phelan, J.
A. Ellman, Beilstein J. Org. Chem. 2016, 12, 1203–1228.
Keywords: asymmetric catalysis • Brønsted acid • DFT •
[12] For
a
recent demonstration of CPA-catalyzed enantioselective
heterocycles • stereochemistry
functionalization of olefins, see: N. Tsuji, J. L. Kennemur, T. Buyck, S.
Lee, S. Prévost, P. S. J. Kaib, D. Bykov, C. Farès, B. List, Science
2018, 359, 1501–1505.
†
For preliminary assessment of non-linearity and H2O effects, see ESI.
For general information, see: (a) National Center for Biotechnology
[1]
[13] For a review, see: J. T. M. Correia, Synlett 2015, 26, 416–417.
[14] L. P. Masic, Curr. Med. Chem. 2006, 13, 3627–3648.
Information.
PubChem
Compound
Database;
CID=1001,
2018); (b) The Merck Index – An Encyclopedia of Chemicals, Drugs,
and Biologicals. 13th Edition (Ed.M. J. O'Neil), Merck and Co., Inc., New
Jersey, 2001.
[15] For examples, see: R. J. D. Hatley, S. J. F. Macdonald, R. J. Slack, J.
Le, S. B. Ludbrook, P. T. Lukey, Angew. Chem. Int. Ed. 2018, 57,
3298–3321; Angew. Chem. 2018, 130, 3354–3379.
[16] C. A. Hunter, Angew. Chem. Int. Ed. 2004, 43, 5310–5324; Angew.
Chem. 2004, 116, 5424–5439.
[2]
[3]
For a review on the general use of azaarenes in asymmetric catalysis,
see: D. Best, H. W. Lam, J. Org. Chem. 2014, 79, 831–845.
[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H.
Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R.
Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J.
L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J.
Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G.
Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V.
N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,
M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K.
Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc.:
Wallingford CT, 2009.
For selected examples, see: (a) Q. Hu, A. Kondoh, M. Terada, Chem.
Sci. 2018, 9, 4348–4351; (b) G. Bertuzzi, D. Pecorari, L. Bernardi, M.
Fochi, Chem. Commun. 2018, 54, 3977–3980; (c) S. Yu, H. L. Sang, S.
Ge, Angew. Chem. Int. Ed. 2017, 56, 15896–15900; Angew. Chem.
2017, 129, 16112–16116; (d) M. Meazza, F. Tur, N. Hammer, K. A.
Jørgensen, Angew. Chem. Int. Ed. 2017, 56, 1634–1638; Angew.
Chem. 2017, 129, 1656–1660; (e) J. Izquierdo, A. Landa, I. Bastida, R.
López, M. Oiarbide, C. Palomo, J. Am. Chem. Soc. 2016, 138, 3282–
3285; (f) Y.-Y. Wang, K. Kanomata, T. Korenaga, M. Terada, Angew.
Chem. Int. Ed. 2016, 55, 927–931; Angew. Chem. 2016, 128, 939–943;
(g) H. B. Hepburn, P. Melchiorre, Chem. Commun. 2016, 52, 3520–
3523; (h) A. Saxena, B. Choi, H. W. Lam, J. Am. Chem. Soc. 2012, 134,
8428–8431; (i) H.-W. Sun, Y.-H. Liao, Z.-J. Wu, H.-Y. Wang, X.-M.
Zhang, W.-C. Yuan, Tetrahedron 2011, 67, 3991–3996; (j) G. Pattison,
G. Piraux, H. W. Lam, J. Am. Chem. Soc. 2010, 132, 14373–14375; (k)
L. Rupnicki, A. Saxena, H. W. Lam, J. Am. Chem. Soc. 2009, 131,
10386–10387; (l) A. Baschieri, L. Bernardi, A. Ricci, S. Suresh, M. F. A.
Adamo, Angew. Chem. Int. Ed. 2009, 48, 9342–9345; Angew. Chem.
2009, 121, 9506–9509.
[18] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157–167.
[19] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
[20] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3094.
[21] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213–222.
This article is protected by copyright. All rights reserved.