Communications
Nishimura, S. Matsuda, K. Fujiwara, T. Tsuji, T. Suzuki, J. Am.
Chem. Soc. 2004, 126, 5034 – 5035; e) S.-Y. Chang, H.-Y. Jang, K.-
S. Jeong, Chem. Eur. J. 2004, 10, 4358 – 4366; f) F. Huang, F. R.
Fronczek, H. W. Gibson, J. Am. Chem. Soc. 2003, 125, 9272 –
9273; g) V. V. Borovkov, J. M. Lintuluoto, H. Sugeta, M. Fujiki,
R. Arakawa, Y. Inoue, J. Am. Chem. Soc. 2002, 124, 2993 – 3006;
h) J. L. Sessler, H. Maeda, T. Mizuno, V. M. Lynch, H. Furuta, J.
Am. Chem. Soc. 2002, 124, 13474 – 13479; i) J. Raker, T. E.
Glass, J. Org. Chem. 2002, 67, 6113 – 6116; j) M. Ikeda, M.
Takeuchi, S. Shinkai, F. Tani, Y. Naruta, S. Sakamoto, K.
Yamaguchi, Chem. Eur. J. 2002, 8, 5541 – 5550; k) M. Takeuchi,
T. Shioya, T. M. Swager, Angew. Chem. 2001, 113, 3476 – 3480;
Angew. Chem. Int. Ed. 2001, 40, 3372 – 3376.
orientational relationships on the signal response
(Figure 3).[18–20] Efforts are currently underway to understand
and exploit this previously underutilized orientational aspect
of RET as a viable amplification mechanism for signal
transduction.
In summary, signal amplification in RET has enabled us to
demonstrate the genuine allosteric switching of a dynamic
multichromophore array, which operates in a perfectly
reversible manner in response to a stepwise addition and
removal of chemical input at a mm concentration level. The
underlying molecular mechanism of the unique amplification
behavior observed both in the recognition and the energy-
transfer steps holds significant implications for molecular
devices and materials used for information storage and
processing.
[9] One challenge is to devise ingenious schemes to systematically
modify the binding affinity of interdependent receptor sites
toward the same ligand as a function of the degree of saturation
(that is, the average number of bound ligands per receptor
molecule).[5,8] Another and presumably more demanding chal-
lenge arises from the typically weak chemical forces involved in
noncovalent interactions, which require a large excess of ligand
L to drive the formation of S·Ln species from a multisite receptor
S with n binding sites. To complete the switching cycle depicted
in Figure 1a, this excessive amount of L needs to be quantita-
tively removed to regenerate free S. This is an operationally
nontrivial task and has not been demonstrated before.
[10] a) J. R. Lakowicz, Principles of Fluorescence Spectroscopy,
3rd ed., Springer, New York, 2006; b) Resonance Energy Trans-
fer (Eds.: D. L. Andrews, A. A. Demidov), Wiley, Chichester,
1999; c) B. Valeur, Molecular Fluorescence: Principles and
Applications, Wiley-VCH, Weinheim, 2002.
[11] a) X. Jiang, J. C. Bollinger, D. Lee, J. Am. Chem. Soc. 2006, 128,
11732 – 11733; b) Y.-K. Lim, X. Jiang, J. C. Bollinger, D. Lee, J.
Mater. Chem. 2007, 17, 1969 – 1980; c) J. A. Riddle, S. P. Lathrop,
J. C. Bollinger, D. Lee, J. Am. Chem. Soc. 2006, 128, 10986 –
10987; d) J. A. Riddle, J. C. Bollinger, D. Lee, Angew. Chem.
2005, 117, 6847 – 6851; Angew. Chem. Int. Ed. 2005, 44, 6689 –
6693; e) E. Opsitnick, D. Lee, Chem, Eur. J. 2007, in press.
[12] Supramolecular Dye Chemistry (Ed.: F. Würthner), Springer,
Berlin, 2005.
Experimental Section
The synthesis and characterization of compounds 1–3 (including
crystallographic data)[14] are described in the Supporting Information.
Received: April 2, 2007
Published online: August 6, 2007
Keywords: cooperative phenomena ·
.
FRET (fluorescence resonant energy transfer) · hydrogen bonds ·
molecular devices · signal amplification
[1] a) K. E. van Holde, W. C. Johnson, P. S. Ho, Principles of
Physical Biochemistry, 2nd ed., Pearson Prentice Hall, Upper
Saddle River, 2006; b) G. Krauss, Biochemistry of Signal Trans-
duction and Regulation, 3rd ed., Wiley-VCH, Weinheim, 2003;
c) A. Levitzki, Quantitative Aspects of Allosteric Mechanisms,
Springer, Berlin, 1978.
[2] a) J.-P. Changeux, S. J. Edelstein, Neuron 1998, 21, 959 – 980;
b) J.-P. Changeux, S. J. Edelstein, Science 2005, 308, 1424 – 1428.
[3] J. D. Badjic, A. Nelson, S. J. Cantrill, W. B. Turnbull, J. F.
Stoddart, Acc. Chem. Res. 2005, 38, 723 – 732.
[13] R. P. Haugland in The Handbook: A Guide to Fluorescent
Probes and Labeling Technologies, 10th ed. (Ed.: M. T. Z.
Spence), Invitrogen, Eugene, 2005.
[14] See the Supporting Information.
[4] K. A. Connors, Binding Constants, Wiley, New York, 1987.
[5] a) J. Rebek, Jr., Acc. Chem. Res. 1984, 17, 258 – 264; b) S.
Shinkai, M. Ikeda, A. Sugassaki, M. Takeuchi, Acc. Chem. Res.
2001, 34, 494 – 503; c) M. Takeuchi, M. Ikeda, A. Sugassaki, S.
Shinkai, Acc. Chem. Res. 2001, 34, 865 – 873; d) L. Kovbasyuk, R.
Krämer, Chem. Rev. 2004, 104, 3161 – 3187, and references
therein.
[6] A sharp structural transition of macromolecules often involves
cooperative folding. Such phase transitions can also be exploited
for binary switching; for example, fluorescent side chains can be
incorporated as “reporter groups” that are sensitive to changes
in the local dielectric constants resulting from structural folding
and unfolding. See: S. Uchiyama, Y. Matsumura, A. P. de Silva,
K. Iwai, Anal. Chem. 2003, 75, 5926 – 5935.
[7] a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew.
Chem. 2000, 112, 3484 – 3530; Angew. Chem. Int. Ed. 2000, 39,
3348 – 3391; b) V. Balzani, M. Venturi, A. Credi, Molecular
Devices and Machines: A Journey into the Nanoworld, Wiley-
VCH, Weinheim, 2003; c) Functional Molecular Nanostructures
(Ed.: A. D. Schlüter), Springer, Berlin, 2005.
[15] CCDC-642093 contains the supplementary crystallographic data
for the key precursor of 2 (BODIPY-appended aniline). The
data can be obtained free of charge from The Cambridge
request/cif. See also the Supporting Information.
[16] The stoichiometric reaction between Me3SiCl and Fꢀ affords
Me3SiF and Clꢀ, neither of which reacts with the receptor
molecule.
[17] The 1:1 binding between a Fꢀ ion and the OH group (schemati-
cally drawn in Figure 4) is consistent with the experimentally
observed 1:6 stoichiometry between compound 2 and nBu4NF,
although alternative geometries can also be considered. See:
a) G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford
University Press, New York, 1997; b) T. Steiner, Angew. Chem.
2002, 114, 50 – 80; Angew. Chem. Int. Ed. 2002, 41, 48 – 76.
[18] B. W. van der Meer in Resonance Energy Transfer (Eds.: D. L.
Andrews, A. A. Demidov), Wiley, Chichester, 1999, pp. 151 –
172.
[19] A. Harriman, G. Izzet, R. Ziessel, J. Am. Chem. Soc. 2006, 128,
10868 – 10875.
[8] For recent examples, see: a) J. L. Sessler, E. Tomat, V. M. Lynch,
J. Am. Chem. Soc. 2006, 128, 4184 – 4185; b) R. Wakabayashi, Y.
Kubo, O. Hirata, M. Takeuchi, S. Shinkai, Chem. Commun. 2005,
5742 – 5744; c) O. Hirata, M. Takeuchi, S. Shinkai, Chem.
Commun. 2005, 3805 – 3807; d) H. Kawai, R. Katoono, K.
[20] Additionally, one could also consider the orientation-dependent
self quenching of BODIPY as another RET pathway leading to
signal amplification. This mechanism is currently under inves-
tigation.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 7019 –7022