C O M M U N I C A T I O N S
Table 2. Synthesis of 1-Aryl-2-alkenylsilanes
Scheme 3
entry
2
Si
R
4
conditionsa
5
yield (%)b
1
2
3
4
5
6
7
8
2a
2b
2c
2d
2e
2f
2g
2a
2d
2a
2d
2e
2f
tBuMe2Si
H
4a
4a
4a
4a
4a
4a
4a
4b
4b
4c
4c
4c
4c
4c
4d
4d
4e
Ac
A
5aa
5ba
5ca
5da
5ea
5fa
5ga
5ab
5db
5ac
5dc
5ec
5fc
88
66
81
61
68
88
74
A
Ac,d
A
Ad
Ae
B
tBuMe2Si
Me3Si
Me
Me
92 (100:0)
83 (89:11)
92 (100:0)
68 (95:5)
46 (96:4)
91 (96:4)
46 (100:0)
93 (100:0)
84 (94:6)
92 (100:0)
9
B
B
B
B
Scheme 4
10
11
12
13
14
15
16
17
B
2g
2a
2f
Bf
B
5gc
5ad
5fd
5fe
Me2PhSi
Me3Si
Me
C
2f
nBu
Cg
of each isomer, the mixture was converted to 1-phenylbutanol
according to the procedure described in Table 3. The enantiomeric
excess of 6kd was 85% ee. The ee value of 6kd strongly supports
that complete chirality transfer to both (E)- and (Z)-5kd took place
according to the mechanism shown in Scheme 3.
The present method provides a new access to (arylalkenyl)silanes,
including optically pure allylic silanes, from silyl-substituted
homoallyl alcohol and aryl halide.
a Conditions A: 5 mol % Pd(OAc)2, 20 mol % P(p-tol)3, 1.44 equiv
Cs2CO3, reflux, 4-15 h. Conditions B: 5 mol % Pd(OAc)2, 20 mol %
PPh3, 1.20 equiv Cs2CO3, reflux, 4-7 h. Conditions C: 2.5 mol %
Pd(OAc)2, 10 mol % PPh3, 1.20 equiv Cs2CO3, reflux, 45 min. b E/Z Ratios
of 5 are in parentheses. c PPh3 was used instead of P(p-tol)3. d Reaction
run using 2.5 mol % of Pd(OAc)2 and 10 mol % of the ligand. e P(cHex)Ph2
(10 mol %) was used. f P(tBu)3 (5 mol %) was used instead. g The reaction
time was 5 h.
Scheme 2
Acknowledgment. This work was supported by Grants-in-Aid
for Scientific Research from MEXT and JSPS. S.H. and K.H.
acknowledge JSPS for financial support. This paper is dedicated
to the memory of the late Professor Yoshihiko Ito.
Supporting Information Available: Experimental details and
characterization data for new compounds. This material is available
Table 3. Chirality Transfer from Optically Active (S)-4d to
(E)-1-Aryl-2-butenylsilanes
References
(1) (a) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc.
2006, 128, 2210-2211. (b) Iwasaki, M.; Hayashi, S.; Hirano, K.;
Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2007, 129, 4463-4469. (c)
Iwasaki, M.; Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K.
Tetrahedron 2007, 63, 5200-5203.
(2) Examples of palladium-catalyzed carbon-carbon bond cleavage of tertiary
alcohols are summarized: Muzart, J. Tetrahedron 2005, 61, 9423-9463.
(3) (a) Miura, K.; Hosomi, A. In Main Group Metals in Organic Synthesis;
Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, Germany,
2004, Vol. 2, Chapter 10. (b) Brook, M. A. Silicon in Organic,
Organometallic, and Polymer Chemistry; Wiley-VCH: New York, 2000.
(c) Fleming, I.; Barbero, A.; Walter, D. Chem. ReV. 1997, 97, 2063-
2192. (d) Langkopf, E.; Schinzer, D. Chem. ReV. 1995, 95, 1375-1408.
(e) Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 3173-
3199.
(4) Very recent selected examples: (a) Terao, J.; Kambe, N. Chem. Rec. 2007,
7, 57-67. (b) Hirano, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc.
2007, 129, 6094-6095. (c) Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007,
129, 3070-3071. (d) Perrone, S.; Knochel, P. Org. Lett. 2007, 9, 1041-
1044. (e) Kacprzynski, M. A.; May, T. L.; Kazane, S. A.; Hoveyda, A.
H. Angew. Chem., Int. Ed. 2007, 46, 4554-4558. (f) Ohmura, T.;
Taniguchi, H.; Suginome, M. J. Am. Chem. Soc. 2006, 128, 13682-13683.
(g) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644-17655.
(h) Schmidtmann, E. S.; Oestrich, M. Chem. Commun. 2006, 3643-3645.
(5) The regioselectivity of each reaction was greater than 99:1. One exception
is the reaction in entry 6, Table 1, wherein the regioselectivity was 98:2.
We assume that the bulky silyl groups would accelerate the reductive
elimination steps and that the conceivable isomerization of the σ-allyl-
(aryl)palladium intermediates scarcely took place.
entry
2
yield of 5 (%)
ee of 6 (%)
1
2
3
4
2a
2b
5ad, 92
5bd, 97
5hd, 94
5id, 90
6ad, 96
6bd, 96
6hd, 94
6id, 96
2-PhC6H4Br (2h)
5
5jd, 87
6jd, 95
(6) When allylsilane having an aryl or an isopropoxy group on the silicon
was employed, decomposition of the allylsilane was observed and no
coupling products were obtained.
(7) Suginome, M.; Iwanami, T.; Ohmori, Y.; Matsumoto, A.; Ito, Y. Chem.
Eur. J. 2005, 11, 2954-2965.
E,R configuration. Immediate reductive elimination from 8a without
loss of the chirality provides (E,S)-5.
The reaction of optically active (S)-4d (96% ee) with bromoben-
zene provided a mixture of (E)- and (Z)-5kd in a ratio of 93:7
(Scheme 4). Since we could not determine the enantiomeric excess
JA0755111
9
J. AM. CHEM. SOC. VOL. 129, NO. 42, 2007 12651