6146
C. Charrier et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6142–6146
8. Marks, P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R.;
Miller, T.; Kelly, W. K. Nat. Rev. Cancer 2001, 1, 194.
9. Xu, W. S.; Parmigiani, R. B.; Marks, P. A. Oncogene 2007,
26, 5541.
10. Xang, X. J.; Seto, E. Oncogene 2007, 26, 5310.
11. (a) Minucci, S.; Pelicci, P. G. Nat. Rev. Cancer. 2006, 6,
38; (b) Lin, H.-Y.; Chen, C.-S.; Lin, S.-P.; Weng, J.-R.;
Chen, C.-S. Med. Res. Rev. 2006, 26, 397.
action resulting from the methyl group can explain the
lack of activity compared to TSA or to the aliphatic
compound 19c. Conformers of 19e are preferentially in
the A or C conformations probably to avoid recovering
of doublets between the oxygen atom of indanone and
the sulfur atom of the thiazol. The smaller ring size,
compared to phenyl, increased interactions, except for
t1 (Figure 11, Supplementary data).
12. Johnstone, R. W. Nat. Rev. Drug Disc. 2002, 1, 287.
13. Somech, R.; Izraeli, S.; Simon, A. J. Cancer Treat. Rev.
2004, 30, 461.
In conclusion, hybrid molecules designed between inda-
nones and MS-275 or SAHA derivatives were prepared.
Only hybrid analogues of SAHA showed antiprolifera-
tive activities. In contrast to para-benzohydroxamate
like MS-275 or 6, our derivatives based on meta-ben-
zohydroxamate and thiazolyl derivatives do not show
substantial activity. In this study, we measured antipro-
liferative activity as a screening test of our new com-
pounds. With this approach, we could determine the
parameters for the interactions of our indanones’ deriv-
atives with the protein surface of HDAC8. When large
spacers were used to link the chelating function to the
indanone, major interactions were obtained. For 1,3
disubstituted aromatic spacers, the link between this
spacer and the indanone system should be longer than
a methylene group, with at least two atoms, such as
the sulfonamide link of compound 6. Local minor inter-
actions were observed with the methyl group at position
C2 in both the aliphatic and aromatic groups of ana-
logues. Thus this methyl group should be removed to al-
low easier access to the active site. Therefore, compound
19c is a promising candidate for further modifications
and for estimation of HDAC inhibitory activities.
14. Mai, A.; Massa, S.; Rotili, D.; Cerbara, I.; Valente, S.;
Pezzi, R.; Simeoni, S.; Ragno, R. Med. Res. Rev. 2005, 25,
261.
15. Monneret, C. Eur. J. Med. Chem. 2005, 40, 1.
16. Tsuji, N.; Kobayashi, M.; Nagashima, K.; Wakisaka, Y.;
Koizumi, K. J. Antibiot. 1976, 29, 1.
17. Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. J. Biol.
Chem. 1990, 265, 17174.
18. (a) Richon, V. M.; Webb, Y.; Merger, R.; Sheppard, T.;
Jursic, B.; Ngo, L.; Civoli, F.; Breslow, R.; Rifkind, R. A.;
Marks, P. A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 5705;
(b) Marks, P. A. Oncogene 2007, 26, 1351.
19. Miller, T. A.; Witter, D. J.; Belvedere, S. J. Med. Chem.
2003, 46, 5097.
20. Cheson, B. D. Br. J. Cancer 2006, 95, S1.
21. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.;
Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P.
Nature 1999, 401, 188.
22. Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J.
D.; Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi,
E.; Tang, J.; Sang, B. C.; Verner, E.; Wynands, R.; Leahy,
E. M.; Dougan, D. R.; Snell, G.; Navre, M.; Knuth, M.
W.; Swanson, R. V.; McRee, D. E.; Tari, L. W. Structure
2004, 12, 1325.
23. Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E. C.;
Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.;
De Francesco, R.; Gallinari, P.; Steinkuhler, C.; Di
Marco, S. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15064.
24. Charrier, C.; Bertrand, P.; Gesson, J.-P.; Roche, J. Bioorg.
Med. Chem. Lett. 2006, 16, 5339.
Acknowledgments
We thank MENRT, CNRS, and La Ligue Contre le
´
Cancer, Comite de Charente-Maritime for financial
support.
25. Anandan, S. K.; Xiao, Z.-Y.; Patel, D. V.; Ward, J. S. US
Patent 2005234033 A1 20051020.
26. Delorme, D.; Woo, S. H.; Vaisburg, A.; Moradel, O.; Leit,
S.; Raeppel, S.; Frechette, S.; Bouchan, G.; WO 03/024443
A3.
27. Maguire, A. R.; Papot, S.; Ford, A.; Touhey, S.; O’Con-
nor, S.; Clynes, M. Synthesis 2001, 1, 41.
28. Ludwig, T.; Ermert, J.; Coenen, H. Nucl. Med. Biol. 2002,
29, 255.
29. Lucet, D.; Heyse, P.; Gissot, A.; Le Gall, T.; Mioskowski,
C. Eur. J. Org. Chem. 2000, 3575.
Supplementary data
Supplementary data associated with this article can be
30. Liu, P.; Chen, Y.; Deng, Jingen.; Tu, Y. Synthesis 2001,
14, 2078.
References and notes
31. Johnson, G. D.; Lindsey, W. B.; Jones, B. R. J. Am. Chem.
Soc. 1956, 78, 461.
32. Kahnberg, P.; Lucke, A. J.; Glenn, M. P.; Boyle, G. M.;
Tyndall, J. A. D.; Parsons, P. G.; Fairlie, D. P. J. Med.
Chem. 2006, 49, 7611.
33. Protein surfaces of HDAC8 were obtained from corre-
sponding pdb files, using internet Chime pluggin from
MDL. Theoritical calculations were realized at the AM1
level, using the closed shell (restricted) wave function from
Chem3D facilities.
1. Chakraborty, S.; Senyuk, V.; Nucifora, G. J. Cell.
Biochem. 2001, 82, 310.
2. Kouzarides, T. Cell 2007, 128, 693.
3. Li, B.; Carey, M.; Workman, J. L. Cell 2007, 128, 707.
4. Cairns, B. R. Trends Cell Biol. 2001, 11, 15.
5. Lund, A. H.; van Lohuizen, M. Genes Dev. 2004, 18, 2315.
6. Jones, P. A.; Baylin, S. B. Cell 2007, 128, 683.
7. Yang, X.-J.; Seto, E. Curr. Opin. Genet. Dev. 2003, 13,
143.