Peptidomimetics of All Secondary Structures
A R T I C L E S
An important development in peptide mimicry has been the
emergence of analogues of peptide secondary structures that
mainly present selected side chains; i.e., the main-chain polya-
mide backbone is abbreviated or totally absent. This approach
is appealing because small molecules without polyamide
backbones are more likely to be orally bioavailable and
proteolytically stable. Early examples of this type of mimic were
from Hirschmann and Smith, who designed ꢀ-turn analogues
based on sugar,33,34 steroid,35 or even catechol36 backbones.
Similarly, Hamilton37-51 and others52-58 used biphenyl,52
terphenyl,38,39,41,47,48,59-61 and related37,39,40,44,47,62,63 scaffolds
to mimic helices. In our laboratory, we refer to compounds that
present only selected side chains to resemble peptide secondary
structures as minimalist mimics.64,65
Literature on minimalist mimics may give the impression that
these types of molecules have one preferred conformation in
solution that corresponds to the target secondary structure, but
that is not the case. Scaffolds like those in Figure 1a do not
exist as a single conformation in solution. They equilibrate
between forms representing local minima in Boltzman distribu-
tions of energy states, and their global minimum does not
necessarily correspond to the target secondary structure. Instead,
it is sufficient that the pertinent conformations for mimicry have
energies similar to the global minima so that they are populated
and that the transition-state energy barriers to arrive at them
can be overcome at ambient temperaturessin other words, that
there are no insurmountable thermodynamic or kinetic obstacles
to attaining the target conformations. On the other hand,
entropic considerations dictate that useful minimalist mimics
cannot be totally flexible. Their scaffolds must have limited
degrees of freedom to avoid significant entropic penalties on
adopting the target secondary structure conformations.
One of the original helical mimics reported by Hamilton is
discussed here to illustrate the validity of the assertions above.
Figure 1b illustrates facets of the conformational equilibria for
this helical mimic. It has only two significant degrees of freedom
that affect the orientation of the side chains. Conformers (i)-(iv)
approximate to minimum energy forms that alleviate steric
interactions between the subsituted phenyl groups.66 There can
be no conformer that is substantially lower in energy than these,
so they are thermodynamically accessible with respect to the
global minimum; i.e., they will all be significantly populated.
In fact, they are approximately equal in energy, so the
populations of each of these conformers are similar. Similarly,
the transition-state energy barriers that need to be surmounted
to equilibrate conformers of such substituted terphenyls can be
overcome at room temperature (those energies for terphenyls67,68
depend on the ortho substitutents involved),69,70 so states
(i)-(iv) are also kinetically accessible.
(30) Kelso, M. J.; Hoang, H. N.; Oliver, W.; Sokolenko, N.; March, D. R.;
Appleton, T. G.; Fairlie, D. P. Angew. Chem., Int. Ed. 2003, 42, 421–
424.
(31) Shepherd, N. E.; Abbenante, G.; Fairlie, D. P. Angew. Chem., Int.
Ed. 2004, 43, 2687–2690.
(32) Fujimoto, K.; Oimoto, N.; Katsuno, K.; Inouye, M. Chem. Commun.
2004, 11, 1280–1281.
(33) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Salvino, J.; Leahy,
E. M.; Sprengeler, P. A.; Furst, G.; Smith, A. B., III J. Am. Chem.
Soc. 1992, 114, 9217–9218.
(34) Hirschmann, R.; et al. J. Am. Chem. Soc. 1993, 115, 12550–12568.
(35) Hirschmann, R.; Sprengeler, P. A.; Kawasaki, T.; Leahy, J. W.;
Shakespeare, W. C.; Smith, A. B., III J. Am. Chem. Soc. 1992, 114,
9699–9701.
(36) Mowery, B. P.; Prasad, V.; Kenesky, C. S.; Angeles, A. R.; Taylor,
L. L.; Feng, J.-J.; Chen, W.-L.; Lin, A.; Cheng, F.-C.; Smith, A. B.,
III; Hirschmann, R. Org. Lett. 2006, 8, 4397–4400.
(37) Kim, I. C.; Hamilton, A. D. Org. Lett. 2006, 8, 1751–1754.
(38) Yin, H.; Lee, G.; Sedey, K. A.; Kutzki, O.; Park, H. S.; Orner, B. P.;
Ernst, J. T.; Wang, H.-G.; Sebti, S. M.; Hamilton, A. D. J. Am. Chem.
Soc. 2005, 127, 10191–10196.
(39) Davis, J. M.; Truong, A.; Hamilton, A. D. Org. Lett. 2005, 7, 5405–
5408.
(40) Ernst, J. T.; Becerril, J.; Park, H.; Yin, H.; Hamilton, A. D. Angew.
Chem., Int. Ed. 2003, 42, 535–539.
(41) Kutzki, O.; Park, H. S.; Ernst, J. T.; Orner, B. P.; Yin, H.; Hamilton,
A. D. J. Am. Chem. Soc. 2002, 124, 11838–11839.
(42) Peczuh, M. W.; Hamilton, A. D. Chem. ReV. 2000, 100, 2479–2494.
(43) Wilson, A. J.; Hong, J.; Fletcher, S.; Hamilton, A. D. Org. Biomol.
Chem. 2007, 5, 276–285.
(44) Davis, J. M.; Tsou, L. K.; Hamilton, A. D. Chem. Soc. ReV. 2007,
36, 326–334.
Conformers (i) and (iv) in Figure 1b correspond to helical
orientations of the side chains with opposite handedness, while
(ii) and (iii) do not display side chains in helical conformations.
If this mimic binds to a substrate in the helical conformation
(i), for instance, then it would do so by induced fit. This is
possible because the target conformation of the mimic is
kinetically and thermodynamically accessible, and not because
it is thermodynamically preferred.
(45) Becerril, J.; Hamilton, A. D. Angew. Chem., Int. Ed. 2007, 46, 4471–
4473.
(46) Fletcher, S.; Hamilton, A. D. Curr. Top. Med. Chem. 2007, 7, 922–
927.
(47) Yin, H.; Lee, G.-I.; Hamilton, A. D. Drug DiscoVery Res. 2007, 281–
299.
(48) Yin, H.; Hamilton, A. D. In Chemical Biology: From Small Molecules to
System Biology and Drug Design; Schreiber, S. L., Kapoor, T. M., Wess,
G., Eds.; Wiley-VCH: Weinheim, 2007; Vol. 1, pp 250-269.
(49) Becerril, J.; Rodriguez, J. M.; Saraogi, I.; Hamilton, A. D. Foldamers
2007, 195–228.
Identification of conformations in equilibrating ensembles that
are both kinetically and thermodynamically accessible can be
done only by comparing with similar systems that have been
(50) Rodriguez, J. M.; Hamilton, A. D. Angew. Chem., Int. Ed. 2007, 46,
8614–8617.
(51) Fletcher, S.; Hamilton, A. D. J. R. Soc., Interface 2006, 3, 215–233.
(52) Jacoby, E. Bioorg. Med. Chem. Lett. 2002, 12, 891–893.
(53) Jiang, H.; Leger, J.-M.; Huc, I. J. Am. Chem. Soc. 2003, 125, 3448–
3449.
(61) Yin, H.; Lee, G.-i.; Park, H. S.; Payne, G. A.; Rodriguez, J. M.;
Sebti, S. M.; Hamilton, A. D. Angew. Chem., Int. Ed. 2005, 44, 2704–
2707.
(54) Che, Y.; Brooks, B. R.; Marshall, G. R. J. Comput.-Aided Mol. Des.
2006, 20, 109–130.
(62) Rodriguez, J. M.; Hamilton, A. D. Tetrahedron Lett. 2006, 47, 7443–
7446.
(55) Okuyama, M.; Laman, H.; Kingsbury, S. R.; Visintin, C.; Leo, E.;
Eward, K. L.; Stoeber, K.; Boshoff, C.; Williams, G. H.; Selwood,
D. L. Nat. Methods 2007, 4, 153–159.
(63) Marimganti, S.; Cheemala, M. N.; Ahn, J.-M. Org. Lett. 2009, 11,
4418–4421.
(64) Chen, D.; Brahimi, F.; Angell, Y.; Li, Y.-C.; Moscowicz, J.; Saragovi,
H. U.; Burgess, K. ACS Chem. Biol. 2009, 4, 769–781.
(65) Angell, Y.; Chen, D.; Brahimi, F.; Saragovi, H. U.; Burgess, K. J. Am.
Chem. Soc. 2008, 130, 556–565.
(56) Ahn, J.-M.; Han, S.-Y. Tetrahedron Lett. 2007, 48, 3543–3547.
(57) Volonterio, A.; Moisan, L.; Rebek, J., Jr. Org. Lett. 2007, 9, 3733–
3736.
(58) Shaginian, A.; Whitby, L. R.; Hong, S.; Hwang, I.; Farooqi, B.;
Searcey, M.; Chen, J.; Vogt, P. K.; Boger, D. L. J. Am. Chem. Soc.
2009, 131, 5564–5572.
(66) Tsuzuki, S.; Uchimaru, T.; Matsumura, K.; Mikami, M.; Tanabe, K.
J. Chem. Phys. 1999, 110, 2858–2861.
(67) Johansson, M. P.; Olsen, J. J. Chem. Theory Comput. 2008, 4, 1460–
1471.
(59) Orner, B. P.; Ernst, J. T.; Hamilton, A. D. J. Am. Chem. Soc. 2001,
123, 5382–5383.
(68) Baraldi, I.; Ponterini, G. J. Mol. Struct. 1985, 23, 287–298.
(69) Leroux, F. ChemBioChem 2004, 5, 644–649.
(70) Grein, F. J. Phys. Chem. A 2002, 106, 3823–3827.
(60) Ellard, J. M.; Zollitsch, T.; Cummins, W. J.; Hamilton, A. L.; Bradley,
M. Angew. Chem., Int. Ed. 2002, 41, 3233–3236.
9
J. AM. CHEM. SOC. VOL. 133, NO. 3, 2011 463