C O M M U N I C A T I O N S
Scheme 2. Ru-Catalyzed Cyclization of 1m in AcOH
give exo-alkylidenecyclopentanes. The starting point of this process
is likely to be the formation of an Ru-vinylidene complex. This
new reaction is expected to open up further opportunities for the
development of catalytic alkyne functionalization.
Scheme 3. Ru-Catalyzed Carboxylative Cyclization of 1,7-diynes
Acknowledgment. This work was supported by the MEC
(Spain) and the E.R.D.F. (Grant CTQ2005-08613), Consolider
Ingenio 2010 (Grant CSD2007-00006), and by the Xunta de Galicia
(Grant PGIDIT06PXIC209041PN). C.G.-R. and J.A.V. thank the
M.E.C. for a predoctoral grant and a Ramo´n y Cajal research
contract, respectively.
Table 3. Ru-Catalyzed Carboxylative Cyclization of 1,7-diynes
6a,ba
entry
diyne
R1
R2
yield%b
7/8
Supporting Information Available: A typical procedure for the
Ru-catalyzed reaction and spectral data for all new compounds. This
1
6a
6b
6b
H
Et
Et
Me
H
H
85
68
39
0:1
7.5:1
4:1
2
3c
References
a Typical conditions were as in Table 2. b Isolated yields. c Heating 6b
at 130 °C favors formation of the homologue of uncyclized alkyne 4 (R )
Et) in 39% yield. E ) CO2Me.
(1) For a general review, see: (a) Trost, B. M.; Frederiksen, M. U.; Rudd,
M. T. Angew. Chem., Int. Ed. 2005, 44, 6630. For books, see: (b)
Murahashi, S.-I., Ed. Ruthenium in Organic Synthesis; Wiley-VCH:
Weinheim, Germany, 2004. (c) Bruneau, C., Dixneuf, P. H., Eds. Topics
in Organometallic Chemistry; Springer: Berlin, 2004; Vol. 11.
(2) Alkynol dimerization: (a) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc.
2001, 123, 8862. (b) LePaih, J.; Monnier, F.; Derien, S.; Dixneuf, P. H.;
Clot, E.; Eisenstein, O. J. Am. Chem. Soc. 2003, 125, 11964. (c) Le Paih,
J.; Derien, S.; Demerseman, B.; Bruneau, C.; Dixneuf, P. H.; Toupet, L.;
Dazinger, G.; Kirchner, K. Chem. Eur. J. 2005, 11, 1312. [2+2+2]
cycloadditions: (d) Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J.
Am. Chem. Soc. 2003, 125, 12143. (e) Kirchner, K.; Calhorda, M. J.;
Schmid, R.; Veiros, L. F. J. Am. Chem. Soc. 2003, 125, 11721. (f)
Yamamoto, Y.; Ishii, J. i.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc.
2004, 126, 3712. (g) Cadierno, V.; Garcia-Garrido, S. E.; Gimeno, J. J.
Am. Chem. Soc. 2006, 128, 15094.
Scheme 4. Proposed Mechanism for the Ru-Catalyzed Tandem
Cyclization-Decarbonylation of 1,6-Terminal Diynes 1
(3) For reviews, see: (a) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed.
2006, 45, 2176. (b) Wakatsuki, Y. J. Organomet. Chem. 2004, 689, 4092.
(c) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Coord. Chem. ReV. 2004,
248, 1627. Alkyne dimerization: (d) Bianchini, C.; Peruzzini, M.;
Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453.
(e) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y.
J. Am. Chem. Soc. 1991, 113, 9604. (f) Fryzuk, M. D.; Huang, L.;
McMannus, N. T.; Paglia, P.; Rettig, S. J.; White, G. S. Organometallics
1992, 11, 2979. (g) Braun, T.; Meuer, P.; Werner, H. Organometallics
1996, 15, 4075. (h) Slugovc, C.; Mereiter, K.; Zobetz, E.; Schmid, R.;
Kirchner, K. Organometallics 1996, 15, 5275. For a Rh-catalyzed
hydrative dimerization of 1-alkynes, see: (i) Park, Y. J.; Kwon, B. I.;
Ahn, J. A.; Lee, H.; Jun, C. H. J. Am. Chem. Soc. 2004, 126, 13892.
(4) (a) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2002, 124, 4178. (b)
Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2003, 125, 11516. (c) Trost,
B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005, 127, 4763.
(5) Kim, H.; Goble, S. D.; Lee, C. J. Am. Chem. Soc. 2007, 129, 1030.
(6) For, a Pd-catalyzed, reductive cyclization of 1,6-diynes, see: Trost, B.
M.; Lee, D. C. J. Am. Chem. Soc. 1988, 110, 7255.
(7) For reviews on vinylidene carbene complexes, see: (a) ref 3a-c. (b) Bruce,
M. I. Chem. ReV. 1991, 91, 197. (c) Varela, J. A.; Saa´, C. Chem. Eur. J.
2006, 12, 6450. (See also ref 1.)
(8) For, an Ru-catalyzed, cyclization-decarbonylation of terminal alkynals,
see: Varela, J. A.; Gonza´lez-Rodr´ıguez, C.; Rub´ın, S. G.; Castedo, L.;
Saa´, C. J. Am. Chem. Soc. 2006, 128, 9576.
(9) For, reductive cyclizations, see: Krische, M. J.; Jang, H.-Y. In Compre-
hensiVe Organometallic Chemistry III; Mingos, D. M. P., Crabtree, R.
H., Eds.; Elsevier: Oxford, England, 2007; Vol. 10, pp 493-536.
(10) This type of nucleophile addition has been observed before: (a) for diynes,
see ref 4b; (b) for alkynes, see ref 2b.
lead to cyclic carbene Ru-hydride C. Reductive loss of AcOH of
C would give the cyclic carbene D, which undergoes another
nucleophilic attack by AcOH to the acyl Ru-hydride E. Reductive
opening of the ruthenacycle of E followed by oxidative addition
of AcOH with concomitant decarbonylation of F led to the Ru-
hydride G.14 Finally, reductive elimination would then afford the
observed cyclopentylidene 2.15 Analogous evolution of B would
give alkyne 4 as a minor product. This mechanism would also
account for 87% of the three hydrogens incorporated in 2a being
deuterium when the reaction of 1a was carried out in AcOD.
In an attempt to insert a second alkyne in the ruthenacycle C,
the reaction of the symmetrical triyne 1n was investigated.
Unfortunately, cyclopentylidene 2n (49%) and uncyclized alkyne
4n (8%) were the only products observed.
(11) For comprehensive screening results, see Supporting Information.
(12) Most likely, desilylation of the putative silylated cyclopentane 2g occurred
under the reaction conditions.
(13) We thank a reviewer for valuable suggestions.
(14) (a) Le Paih, J.; Rodriguez, D. C.; Derien, S.; Dixneuf, P. H. Synlett 2000,
95. (b) No carbonylated product was observed when reaction of 1e was
performed under an atmosphere of CO. See Supporting Information for
details.
(15) The Z geometry of 2 was determined by NOE experiments (see Supporting
Information for details).
In conclusion, we have developed a ruthenium-catalyzed tandem
cyclization-decarbonylation whereby 7-unsubstituted 1,6-diynes
JA0752888
9
J. AM. CHEM. SOC. VOL. 129, NO. 43, 2007 12917