Chemical Science
Edge Article
in anabolic pathways such as skin wound healing and restoring
muscle loss.38 Therefore, 5c{3,9} could be an excellent research
tool for activating the mTORC1 signalling pathway and used to
reveal the non-canonical role of LRS in leucine-decient
conditions. Furthermore, 5c{3,9} can be used as a novel lead
compound for the selective activation of mTORC1 via LRS–
RagD stabilization without targeting mTORC1 itself.
3 M. J. Perez de Vega, M. Martin-Martinez and R. Gonzalez-
Muniz, Curr. Top. Med. Chem., 2007, 7, 33–62.
4 M. R. Arkin, Y. Tang and J. A. Wells, Chem. Biol., 2014, 21,
1102–1124.
5 M. R. Arkin and J. A. Wells, Nat. Rev. Drug Discovery, 2004, 3,
301–317.
6 T. Clackson and J. A. Wells, Science, 1995, 267, 383–386.
7 V. Azzarito, K. Long, N. S. Murphy and A. J. Wilson, Nat.
Chem., 2013, 5, 161–173.
8 P. Buchwald, IUBMB Life, 2010, 62, 724–731.
9 S. K. Ko, H. J. Jang, E. Kim and S. B. Park, Chem. Commun.,
2006, 2962–2964.
Conclusions
For the systematic perturbation of PPIs, we designed and
synthesized tetra-substituted hexahydro-4H-pyrazino[2,1-c]
[1,2,4]triazine-4,7(6H)-diones to mimic the b-turn structure, 10 S. Oh and S. B. Park, Chem. Commun., 2011, 47, 12754–
a key secondary structural motif. Distance calculations of 12761.
energy-minimized conformers and the alignment of model 11 H. Kim, T. T. Tung and S. B. Park, Org. Lett., 2013, 15, 5814–
compound 7 with side chains of a biologically active b-turn 5817.
motif conrmed that our tetra-substituted b-turn mimetic 12 J. Kim, H. Kim and S. B. Park, J. Am. Chem. Soc., 2014, 136,
bicycle 1 was conformationally similar to the natural b-turn
14629–14638.
structure. We then developed a robust synthetic pathway to 13 H. S. G. Beckmann, F. Nie, C. E. Hagerman, H. Johansson,
obtain the b-turn mimetic scaffolds via tandem N-acyliminium
cyclization and constructed a 162-member library of tetra-
Y. S. Tan, D. Wilcke and D. R. Spring, Nat. Chem., 2013, 5,
861–867.
substituted pyrazinotriazinediones as b-turn mimetics with an 14 J. Kim, W. S. Lee, J. Koo, J. Lee and S. B. Park, ACS Comb. Sci.,
average purity of 90% using a solid-phase parallel synthesis 2014, 16, 24–32.
platform. In this synthetic route, a new chiral center was 15 W. Guo, J. A. Wisniewski and H. Ji, Bioorg. Med. Chem. Lett.,
generated in a diastereoselective manner, which was conrmed 2014, 24, 2546–2554.
using 2D NOE. Aer library construction, we examined whether 16 H. Yin and A. D. Hamilton, Angew. Chem., Int. Ed., 2005, 44,
these b-turn mimetic compounds could modulate PPIs and 4130–4163.
identied a series of compounds that could effectively stabilize 17 A. J. Wilson, Chem. Soc. Rev., 2009, 38, 3289–3300.
the LRS–RagD interaction using ELISA-based screening. The 18 A. Whitty and G. Kumaravel, Nat. Chem. Biol., 2006, 2, 112–
cellular interaction between LRS and RagD directly mediated
the leucine-dependent activation of mTORC1 and resulting 19 M. Pelay-Gimeno, A. Glas, O. Koch and T. N. Grossmann,
biological outcomes. The western blot analysis of phosphory- Angew. Chem., Int. Ed., 2015, 54, 8896–8927.
lated S6K1 and FRET imaging in live cell revealed that 5c{3,9} 20 J. Gavenonis, B. A. Sheneman, T. R. Siegert, M. R. Eshelman
stabilized the direct interaction between LRS and RagD and
and J. A. Kritzer, Nat. Chem. Biol., 2014, 10, 716–722.
activated the leucine-dependent mTORC1 signalling pathway in 21 S. M. Biros, L. Moisan, E. Mann, A. Carella, D. Zhai,
118.
living cells. With this mechanism of action, 5c{3,9} can serve as
an excellent research tool for studying the non-canonical role of
J. C. Reed and J. Rebek Jr, Bioorg. Med. Chem. Lett., 2007,
17, 4641–4645.
LRS under leucine-decient conditions and as a lead structure 22 S. Thompson and A. D. Hamilton, Org. Biomol. Chem., 2012,
for examining disease models that require the selective activa- 10, 5780–5782.
tion of anabolic processes for wound healing or the restoration 23 M. Laplante and D. M. Sabatini, Cell, 2012, 149, 274–293.
of muscle loss.
24 Y. Sancak, T. R. Peterson, Y. D. Shaul, R. A. Lindquist,
C. C. Thoreen, L. Bar-Peled and D. M. Sabatini, Science,
2008, 320, 1496–1501.
25 J. M. Han, S. J. Jeong, M. C. Park, G. Kim, N. H. Kwon,
H. K. Kim, S. H. Ha, S. H. Ryu and S. Kim, Cell, 2012, 149,
410–424.
Acknowledgements
We thank Prof. Sunghoon Kim for generously providing
pAmCyan1-N1-LRS and pZsYellow1-N1-RagD plasmids. This
work was supported by the Creative Research Initiative Grant 26 A. Efeyan, W. C. Comb and D. M. Sabatini, Nature, 2015, 517,
(2014R1A3A2030423) and the Bio & Medical Technology Devel- 302–310.
opment Program (2012M3A9C4048780), funded by the National 27 K. Burgess, Acc. Chem. Res., 2001, 34, 826–835.
Research Foundation of Korea (NRF).
28 L. R. Whitby and D. L. Boger, Acc. Chem. Res., 2012, 45, 1698–
1709.
29 L. R. Whitby, Y. Ando, V. Setola, P. K. Vogt, B. L. Roth and
D. L. Boger, J. Am. Chem. Soc., 2011, 133, 10184–10194.
Notes and references
1 A. A. Ivanov, F. R. Khuri and H. Fu, Trends Pharmacol. Sci., 30 A. Glas, D. Bier, G. Hahne, C. Rademacher, C. Ottmann and
2013, 34, 393–400.
2 L. Jin, W. Wang and G. Fang, Annu. Rev. Pharmacol. Toxicol.,
2014, 54, 435–456.
T. N. Grossmann, Angew. Chem., Int. Ed., 2014, 53, 2489–
2493.
31 A. Glas and T. N. Grossmann, Synlett, 2015, 26, 1–5.
2760 | Chem. Sci., 2016, 7, 2753–2761
This journal is © The Royal Society of Chemistry 2016