IR-Based Isotopic Labeling Technique
A R T I C L E S
has been proposed.18 These differences arise from the complex
energy landscape for the formation of â-hairpins19 and the effects
of various unique peptide sequences on the relative weights of
different contributions to the process.20-22
factors such as the dynamics of the â-hairpin structure and the
effect of the specific sequence on the cooperativity between the
â-turn formation and the hydrophobic cluster formation. Kinetic
experiments (T-jump IR or T-jump fluorescence) also have some
controversy regarding interpretation of the relaxation in terms
of a single exponential.24,46 In response, isotopic labeling can
provide useful information to test the overall cooperativity and
local stability differences.
Optical spectra are sensitive to rapid structural change and
provide data reflecting the population of various intermediate
states, if they are spectrally distinct. Infrared (IR) and circular
dichroism (CD) spectroscopies are primarily used to monitor
secondary structure, and fluorescence is used to follow the
tertiary structure change. The disadvantage of these methods is
that they are low resolution, having no site selectivity, so that
only average structural change is normally monitored. Isotope-
edited IR spectroscopy can allow study of the thermal unfolding
process in a more site-specific manner, thus yielding a better
understanding of the peptide folding mechanism.37,47
The 16-residue â-hairpin derived from the protein G B1
domain was the first â-hairpin model system widely studied
using equilibrium IR spectroscopy23 and folding kinetics by
T-jump fluorescence.24 Another widely studied â-hairpin model
template (Trpzip), which is stabilized by hydrophobic interac-
tions of Trp residues, was proposed by Cochran,25 and has been
studied by IR,19,26 T-jump IR,27,28 T-jump fluorescence,29,30 and
2D-IR.31,32 We will present results of our isotopic labeling study
of Trpzip models separately (Huang et al., to be published).
We have previously presented spectra and theoretical models
D
for a series of â-hairpin peptides based on Pro-Gly and Asn-
Gly turn sequences incorporated into hairpin sequences designed
by Gellman.33 All these studies combined with NMR data
provided an increasing understanding of the stability and folding
mechanisms of â-hairpin peptides.34,35
While for many proteins the thermal unfolding often appears
to be a two-state process,36 for peptides, in many cases, this is
not an appropriate model.26,34,37-42 Although some â-hairpin
peptides are reported to favor a two-state transition,24,43,44 results
with various methods indicate a deviation from a “true” two-
state transition for several â-hairpin model peptides.19,34,39,41,45
NMR studies using isotopic labeling on different segments of
the peptide sequence provide evidence of multistate unfolding.38
The lack of two-state signature could be attributed to different
Isotope-edited IR spectroscopy has become a useful means
of developing site-specific structural and dynamic information
of polypeptides.47 It has been used to study structural and
coupling information in R-helix conformation,37,48-50 solvation/
desolvation,51-53 N-capping,54 stability and unfolding dyna-
mics,55-57 â-sheet formation and aggregation.58-66 We have
begun a series of studies on â-hairpins using isotopic labeling
and vibrational spectra67-69 for which this paper develops an
interpretation of cross-strand coupling. The most stable hairpin
turns reported incorporate a non-proteinic DPro-Gly sequence33,70,71
(18) Felts, A. K.; Narano, Y.; Gallicchio, E.; Levy, R. M. Proteins 2004, 56,
310-321.
(19) Yang, W.-Y.; Pitera, J. W.; Swope, W. C.; Gruebele, M. J. Mol. Biol. 2004,
336, 241-251.
(46) Xu, Y.; Wang, T.; Gai, F. Chem. Phys. 2006, 323, 21-27.
(47) Decatur, S. M. Acc. Chem. Res. 2006, 39, 169-175.
(48) Decatur, S. M.; Antonic, J. J. Am. Chem. Soc. 1999, 121, 11914-11915.
(49) Barber-Armstrong, W.; Donaldson, T.; Wijesooriya, H.; Silva, R. A. G.
D.; Decatur, S. M. J. Am. Chem. Soc. 2004, 126, 2339-2345.
(50) Huang, R.; Kubelka, J.; Barber-Armstrong, W.; Silva, R. A. G. D.; Decatur,
S. M.; Keiderling, T. A. J. Am. Chem. Soc. 2004, 126, 2346-2354.
(51) Starzyk, A.; Barber-Armstrong, W.; Sridharan, M.; Decatur, S. M.
Biochemistry 2005, 44, 369-376.
(20) Deechongkit, S.; Nguyen, H.; Jager, M.; Powers, E. T.; Gruebele, M.; Kelly,
J. W. Curr. Opin. Struct. Biol. 2006, 16, 94-101.
(21) Colombo, G.; DeMori, G. M. S.; Roccatano, D. Protein Sci. 2003, 12, 538-
550.
(22) Griffiths-Jones, S. R.; Sharman, G. J.; Maynard, A. J.; Searle, M. S. J.
Mol. Biol. 1998, 284, 1597-1609.
(23) Arrondo, J. L. R.; Blanco, F. J.; Serrano, L.; Goni, F. M. FEBS Lett. 1996,
384, 35-37.
(52) Fesinmeyer, R. M.; Peterson, E. S.; Dyer, R. B.; Andersen, N. H. Protein
Sci. 2005, 14, 2324-2332.
(24) Mun˜oz, V.; Thompson, P. A.; Hofrichter, J. Nature 1997, 390, 196-199.
(25) Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Proc. Natl. Acad. Sci.
U.S.A. 2001, 98, 5578-5583.
(53) Walsh, S. T. R.; Cheng, R. P.; Wright, W. W.; Alonso, D. O. V.; Daggett,
V.; Vanderkooi, J. M.; DeGrado, W. F. Protein Sci. 2003, 12, 520-531.
(54) Decatur, S. M. Biopolymers 2000, 54, 180-185.
(55) Huang, C. Y.; Getahun, Z.; Wang, T.; DeGrado, W. F.; Gai, F. J. Am.
Chem. Soc. 2001, 123, 12111-12112.
(26) Wang, T.; Xu, Y.; Du, D.; Gai, F. Biopolymers 2004, 75, 163-172.
(27) Du, D.; Tucker, M. J.; Gai, F. Biochemistry 2006, 45, 2668-2678.
(28) Du, D.; Zhu, Y.; Huang, C.-Y.; Gai, F. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 15915-15920.
(56) Venyaminov, S. Y.; Hedstrom, J. F.; Prendergast, F. G. Proteins 2001, 45,
81-89.
(29) Snow, C. D.; Qiu, L.; Du, D.; Gai, F.; Hagen, S. J.; Pande, V. S. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 4077-4082.
(57) Ramajo, A. P.; Petty, S. A.; Starzyk, A.; Decatur, S. M.; Volk, M. J. Am.
Chem. Soc. 2005, 127, 13784-13785.
(30) Yang, W.-Y.; Gruebele, M. J. Am. Chem. Soc. 2004, 126, 7758-7759.
(31) Smith, A. W.; Chung, H. S.; Ganim, Z.; Tokmakoff, A. J. Phys. Chem. B
2005, 109, 17025-17027.
(58) Brauner, J. W.; Dugan, C.; Mendelsohn, R. J. Am. Chem. Soc. 2000, 122,
677-683.
(32) Wang, J.; Chen, J.; Hochstrasser, R. M. J. Phys. Chem. B 2006, 110, 7545-
(59) Silva, R. A. G. D.; Barber-Armstrong, W.; Decatur, S. M. J. Am. Chem.
Soc. 2003, 125, 13674-13675.
7555.
(33) Stanger, H. E.; Gellman, S. H. J. Am. Chem. Soc. 1998, 120, 4236-4237.
(34) Hilario, J.; Kubelka, J.; Keiderling, T. A. J. Am. Chem. Soc. 2003, 125,
7562-7574.
(60) Petty, S. A.; Adalsteinsson, T.; Decatur, S. M. Biochemistry 2005, 44,
4720-4726.
(61) Petty, S. A.; Decatur, S. M. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 14272-
(35) Hilario, J.; Kubelka, J.; Syud, F. A.; Gellman, S. H.; Keiderling, T. A.
Biospectroscopy 2002, 67, 233-236.
14277.
(62) Petty, S. A.; Decatur, S. M. J. Am. Chem. Soc. 2005, 127, 13488-13489.
(63) Paul, C.; Axelsen, P. H. J. Am. Chem. Soc. 2005, 127, 5754-5755.
(64) Paul, C.; Wang, J.; Wimley, W. C.; Hochstrasser, R. M.; Axelsen, P. H. J.
Am. Chem. Soc. 2004, 126, 5843-5850.
(36) Jackson, S. E. Folding Des. 1998, 3, R81-91.
(37) Silva, R. A. G. D.; Kubelka, J.; Decatur, S. M.; Bour, P.; Keiderling, T. A.
Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8318-8323.
(38) Santiveri, C. M.; Santoro, J.; Rico, M.; Jimenez, M. A. J. Am. Chem. Soc.
2002, 124, 14903-14909.
(65) Lansbury, P. T. J.; Costa, P. R.; Griffiths, J. M.; Simon, E. J.; Auger, M.;
Halverson, K. J.; Kocisko, D. A.; Hendsch, Z. S.; Ashburn, T. T.; Spencer,
R. G. Nat. Struct. Biol. 1995, 2, 990-998.
(39) Kuznetsov, S. V.; Hilario, J.; Keiderling, T. A.; Ansari, A. Biochemistry
2003, 42, 4321-4332.
(66) Halverson, K.; Sucholeiki, I.; Ashburn, T. T.; Lansbury, P. T. J. Am. Chem.
Soc. 1991, 113, 6701-6703.
(40) Lopez, M. M.; Chin, D.-H.; Baldwin, R. L.; Makhatadze, G. I. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 1298-1302.
(67) Setnicˇka, V.; Huang, R.; Thomas, C. L.; Etienne, M. A.; Kubelka, J.;
Hammer, R. P.; Keiderling, T. A. J. Am. Chem. Soc. 2005, 127, 4992-
4993.
(41) Ahmed, Z.; Beta, I. A.; Mikhonin, A. V.; Asher, S. A. J. Am. Chem. Soc.
2005, 127, 10943-10950.
(42) Yamazaki, T.; Furuya, H.; Watanabe, T.; Nishiuchi, Y.; Nishio, H.; Abe,
A. Chem. Today 2006, 24, 55-58.
(68) Bour, P.; Keiderling, T. A. J. Phys. Chem. B 2005, 109, 5348-5357.
(69) Kim, J.; Huang, R.; Kubelka, J.; Bour, P.; Keiderling, T. A. J. Phys. Chem.
B 2006, 110, 23590-23602.
(43) Espinosa, J. F.; Mun˜oz, V.; Gellman, S. H. J. Mol. Biol. 2001, 306, 397-
402.
(70) Ragothama, S. R.; Awasthi, S. K.; Balaram, P. J. Chem. Soc., Perkin Trans.
1998, 2, 137-143.
(44) Streicher, W. W.; Makhatadze, G. I. J. Am. Chem. Soc. 2006, 128, 30-31.
(45) Dhanasekaran, M.; Prakash, O.; Gong, Y.-X.; Baures, P. W. Org. Biomol.
Chem. 2004, 2, 2071-2082.
(71) Zhao, C.; Polavarapu, P. L.; Das, C.; Balaram, P. J. Am. Chem. Soc. 2000,
122, 8228-8231.
9
J. AM. CHEM. SOC. VOL. 129, NO. 44, 2007 13593