F. Han et al. / Tetrahedron Letters 52 (2011) 830–833
833
Reducing the reaction time from 1.5 h to 0.5 h decreases the yield
Supplementary data
to 67%, although a high ee was maintained (Table 1, entries 10–12).
With these optimized reaction conditions identified, we evalu-
ated the scope of this method for various arylboronic acids, apply-
ing (R,R)-L1 as the ligand and 1a as the substrate (Table 2). Several
conclusions are drawn from this study: (a) substituents at the
meta- and para-position do not have an effect on the excellent
enantioselectivity of the reaction. Enantiomeric excesses up to
96% are achieved, which is comparable to the values found in the
unsubstituted case. (b) For each tested arylboronic acid, trifluoro-
methyl as the electron-withdrawing group slowed the reaction,
leading to incomplete conversions (Table 2, entry 13). (c) The steric
hindrance of substituents (Table 2, entries 9, 11, and 14) restricted
the insertion of the substrate and resulted in lower reactivity for
the 1,4-addition.
Supplementary data associated with this article can be found, in
References and notes
1. Bartók, M. Chem. Rev. 2010, 110, 1663.
2. (a) Bowery, N. G.; Hill, D. R.; Hudson, A. L.; Doble, A.; Middemiss, N. D.; Shaw, J.;
Turnbull, M. Nature 1980, 283, 92; (b) Silverman, R. B.; Andruszkiewicz, R.;
Nanavati, S. M.; Taylor, C. P.; Vartanian, M. G. J. Med. Chem. 1991, 34, 2295; (c)
Costantino, G.; Macchiarulo, A.; Guadix, A. E.; Pellicciari, R. J. Med. Chem. 2001,
44, 1827; (d) Allan, R. D.; Bates, M. C.; Drew, C. A.; Duke, R. K.; Hambley, T. W.;
Johnston, G. A. R.; Mewett, K. N.; Spence, I. Tetrahedron 1990, 46, 2511; (e)
Belliotti, T. R.; Capiris, T.; Ekhato, V.; Kinsora, J. J.; Field, M. J.; Heffner, T. G.;
Melzer, L. T.; Schwarz, J. B.; Taylor, C. P.; Thorpe, A. J.; Vartanian, M. G.; Wise, L.
D.; Zhi-Su, T.; Weber, M. L.; Wustrow, D. J. J. Med. Chem. 2005, 48, 2294; (f) Ong,
J.; Kerr, D. I. S.; Doolette, D. J.; Duke, R. K.; Mewett, K. N.; Allen, R. D.; Johnston,
G. A. R. Eur. J. Pharmacol. 1993, 233, 169.
To showcase the utility of the asymmetric 1,4-addition prod-
ucts, we decided to take advantage of the functional groups pres-
ent in the conjugate addition products for subsequent synthetic
elaboration. In particular, the adduct of 4-chlorophenylboronic
ˇ
3. Ordoꢀnez, M.; Cativiela, C. Tetrahedron: Asymmetry 2007, 18, 3.
4. (a) Claudio, P.; Aitor, L.; Antonia, M.; Mikel, O.; Angel, P.; Silvia, V. Angew. Chem.,
Int. Ed. 2007, 46, 8431; (b) Kennosuke, I.; Shuji, K. J. Am. Chem. Soc. 2002, 124,
13394.
5. (a) Hoge, G. J. Am. Chem. Soc. 2003, 125, 10219; (b) Burk, M. J.; de Koning, P. D.;
Grote, T. M.; Hoekstra, M. S.; Hoge, G.; Jennings, R. A.; Kissel, W. S.; Le, T. V.;
Lennon, I. C.; Mulhern, T. A.; Ramsden, J. A.; Wade, R. A. J. Org. Chem. 2003, 68,
5731; (c) Hoge, G.; Wu, H.-P.; Kissel, W. S.; Pflum, D. A.; Greene, D. J.; Bao, J. J.
Am. Chem. Soc. 2004, 126, 5966; (d) Paraskar, A. S.; Sudalai, A. Tetrahedron 2006,
62, 4907.
6. (a) Deng, J.; Duan, Z.-C.; Huang, J.-D.; Hu, X.-P.; Wang, D.-Y.; Yu, S.-B.; Xu, X.-F.;
Zheng, Z. Org. Lett. 2007, 9, 4825; (b) Deng, J.; Hu, X.-P.; Huang, J.-D.; Yu, S.-B.;
Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008, 73, 6022.
7. (a) Meyer, O.; Becht, J.-M.; Helmchen, G. Synlett 2003, 1539; (b) Becht, J.-M.;
Meyer, O.; Helmchen, G. Synthesis 2003, 2805; Using chiral
diphenylphosphino-functionalized NHC as ligand, see: (c) Becht, J.-M.;
Bappert, E.; Helmchen, G. Adv. Synth. Catal. 2005, 347, 495.
8. Selected examples: (a) Sakuma, S.; Sakai, M.; Itooka, R.; Miyaura, N. J. Org.
Chem. 2000, 65, 5951; (b) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829;
(c) Hayashi, T. Pure Appl. Chem. 2004, 76, 465; (d) Carreira, E. M.; Grutzmacher,
H.; Defieber, C. Angew. Chem., Int. Ed. 2008, 47, 4482; (e) Nishimura, T.; Wang,
J.; Nagaosa, M.; Okamoto, K.; Shintani, R.; Kwong, F. Y.; Yu, W. Y.; Chan, S. C. A.;
Hayashi, T. J. Am. Chem. Soc. 2010, 132, 464.
acid (2d) and ethyl
c-phthalimidocrotonates (1a) provided the
opportunity to prepare optically pure Baclofen, an antispasmodic
agent, using 1,4-adducts as a key step. Thus, subjection of 3ad
(Table 2, entry 4), which can be upgraded via recrystallization to
over 99% ee, to subsequent hydrolysis (6 N HCl) afforded the (S)-
Baclofen in nearly quantitative yield (Scheme 2), demonstrating
the potential utility of this method in the synthesis of chiral
pharmaceuticals.
Furthermore, we used this method to the synthesis of Rolipram,
which has been known as a cyclic adenosine monophosphate
(cAMP)-specific phosphodiesterase and is employed as an anti-
inflammatory agent and antidepressant.14 Deprotection of the
imide and subsequent preparation of (S)-Rolipram were accom-
plished in 78% overall yield by treatment of 3an (99% ee after
one crystallization) with aqueous hydrazine followed by refluxing
with Et3N in toluene (Scheme 3).
9. Edwards, H. J.; Hargrave, J. D.; Penrose, S. D.; Frost, C. G. Chem. Soc. Rev. 2010,
39, 2093.
10. Selected examples: (a) James, B. R.; McMillan, R. S. Can. J. Chem. 1977, 55, 3927;
(b) Khiar, N.; Fernandez, I.; Alcudia, F. Tetrahedron Lett. 1993, 34, 123; (c)
Tokunoh, R.; Sodeoka, M.; Aoe, K.-I.; Shibasaki, M. Tetrahedron Lett. 1995, 36,
8035.
3. Conclusion
In summary, we document that the asymmetric 1,4-addition of
arylboronic acids to ethyl
11. (a) Mariz, R.; Luan, X. J.; Gatti, M.; Linden, A.; Dorta, R. J. Am. Chem. Soc. 2008,
130, 2172; (b) Bürgi, J. J.; Mariz, R.; Gatti, M.; Drinkel, E.; Luan, X. J.;
Blumentritt, S.; Linden, A.; Dorta, R. Angew. Chem., Int. Ed. 2009, 48, 2768.
12. (a) Chen, J.-M.; Li, D.; Ma, H. F.; Cun, L.-F.; Zhu, J.; Deng, J.-G.; Liao, J. Tetrahedron
Lett. 2008, 49, 6921; (b) Wang, P.; Chen, J.-M.; Cun, L. F.; Deng, J.-G.; Zhu, J.;
Liao, J. Org. Biomol. Chem. 2009, 7, 3741; (c) Chen, J.-M.; Lang, F.; Li, D.; Cun, L.-
F.; Zhu, J.; Deng, J.-G.; Lioa, J. Tetrahedron: Asymmetry 1953, 2009, 20; (d) Chen,
J.; Chen, J.-M.; Lang, F.; Zhang, X.-Y.; Cun, L. F.; Zhu, J.; Deng, J.-G.; Liao, J. J. Am.
Chem. Soc. 2010, 132, 4552; (e) Lang, F.; Li, D.; Chen, J.-M.; Chen, J.; Li, L. C.; Cun,
L. F.; Zhu, J.; Deng, J.-G.; Liao, J. Adv. Synth. Catal. 2010, 352, 843.
13. Todd, D.; Teich, S. J. Am. Chem. Soc. 1953, 75, 1895.
c-phthalimidocrotonate proceeds with
high enantioselectivity (90–96% ee) under mild reaction conditions
by using a Rh/(R,R)-1,2-bis(tert-butylsulfinyl)benzene complex as
the catalyst. The method has been successfully applied to obtain
chiral pharmaceuticals, such as enantiomerically enriched Baclofen
and Rolipram.
Acknowledgments
14. (a) Baures, P. W.; Eggleston, D. S.; Erhard, K. F.; Cieslinski, L. B.; Torphy, T. J.;
Christensen, S. B. J. Med. Chem. 1993, 36, 3274; (b) Mulzer, J. J. Prakt. Chem.
1994, 336, 287; (c) Sommer, N.; Loeschmann, P. A.; Northoff, G. H.; Weller, M.;
Steinbrecher, A.; Steinbach, J. P.; Lichtenfiels, R.; Meyermann, R.; Reithmueller,
A.; Fontana, A.; Dichgans, J.; Martin, R. Nat. Med. 1995, 1, 244.
We are grateful for support from the NSFC (20872139 and
21072186), the West Light Foundation of CAS, the National Basic
Research Program of China (973 Program, 2010CB833300) and
Chengdu Institute of Biology, CAS (Y0B1051100).