TABLE 1. Optimization of Reaction Conditions
Microwave-Assisted Suzuki Cross-Coupling
Reaction, a Key Step in the Synthesis of
Polycyclic Aromatic Hydrocarbons and Their
Metabolites
entry
reaction conditions
time/temp (°C)
conv (%)
1
2
Pd(PPh3)4, CsF, DME
Pd(OAc)2, K2CO3,
1 h/120
20 min/120
90
85
dioxane/water (5:1)
Pd EnCat 30 (5 mol %),
Bu4NH4OAc, EtOH
Pd EnCat 30 (10 mol %),
Bu4NH4OAc, EtOH
3
4
10 min/120
20 min/ 120
90
Arun K. Sharma,* Krishnegowda Gowdahalli,
Jacek Krzeminski, and Shantu Amin
>98
Department of Pharmacology, Chemical Carcinogenesis and
ChemopreVention Program of Penn State Cancer Institute, Penn
State College of Medicine, 500 UniVersity DriVe,
Hershey, PennsylVania 17033
chrysene (B[g]C), dibenzo[a,l]pyrene (DB[a,l]P), and dibenzo-
[c,mno]chrysene (DB[c,mno]C)] and those having a methyl
group in the bay region4 [e.g., 7,12-dimethylbenz[a]anthracene
(DMBA)] are relatively potent carcinogens. In connection with
metabolism study and determination of mutagenicity and
tumorigenicity, the synthetic standards of PAHs and their
metabolites are required. This need has led to a continuous
development of new and efficient methods for their synthesis.
Most prominent methods commonly used involve Suzuki cross-
coupling reactions5-13 and photochemical reactions.1,10,13,14 The
former has recently been used extensively because it allows for
a larger scale and is by far the most versatile synthetic method
for the generation of biaryl compounds.15 We have previously
reported the successful use of Suzuki cross-coupling reactions
to generate key intermediates for the synthesis of PAHs and
their metabolites.9-13 However, this coupling is associated with
extended reaction times and requires up to 24 h of refluxing.
In pursuit of our previous investigations toward developing more
efficient methods for the synthesis of PAH derivatives, we
optimized the Suzuki reaction conditions under microwave
irradiation. It was envisaged that the microwave irradiation
would enhance the rate of reaction, thereby reducing time.
The conditions were optimized for the reaction of 9-bro-
mophenanthrene with 2-formylphenylboronic (2) (Table 1).
Microwave irradiation resulted in 90% conversion16 in 1 h at
120 °C, using Pd(PPh3)4 and CsF in DME (entry 1), the reaction
ReceiVed July 30, 2007
A highly efficient and general method for Suzuki cross-
coupling reaction en route to the synthesis of polycyclic
aromatic hydrocarbons (PAHs) and their metabolites has been
developed. Microwave irradiation of aryl bromides 1 and
boronic acids (2 and 3) using polyurea microencapsulated
palladium catalyst (Pd EnCat 30) gave the coupling adducts
4 and 5 in excellent yields in just 20 min compared to ∼24
h under thermal conditions, corresponding to a ∼72-fold
increase in reaction rate.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous
environmental pollutants1 that require metabolic activation to
electrophilic reactive species in order to exert their mutagenic
and tumorigenic activity.2 The diol epoxides derived from PAHs
having a sterically hindered fjord region3 [e.g., benzo[c]-
phenanthrene (B[c]P), benzo[c]chrysene (B[c]C), benzo[g]-
(4) (a) Huggins, C. B.; Pataki, J.; Harvey, R. G. Proc. Natl. Acad. Sci.
U.S.A. 1967, 58, 2253. (b) DiGiovanni, J.; Diamond, L.; Harvey, R. G.;
Slaga, T. J. Carcinogenesis 1983, 4, 403. (c) Hecht, S. S.; Amin, S.; Huie,
K.; Melikan, A. A.; Harvey, R. G. Cancer Res. 1987, 47, 5310. (d) Iyer, R.
P.; Lyga, J. W.; Secrist, J. A., III; Daub, G. H.; Slaga, T. J. Cancer Res.
1980, 40, 1073.
(5) (a) Zhang, F. J.; Cortez, C.; Harvey, R. G. J. Org. Chem. 2000, 65,
3952. (b) Rice, J. E.; Cai, Z.-W. J. Org. Chem. 1993, 58, 1415. (c) Kumar,
S. J. Chem. Soc., Perkin Trans. 1 1998, 3157.
* To whom correspondence should be addressed. Phone: (717) 531-0003
ext 285016. Fax: (717) 531-0244.
(6) Kumar, S. J. Chem. Soc., Perkin Trans. 1 2001, 1018.
(7) Kumar, S. J. Org. Chem. 1997, 62, 8535.
(8) Kumar, S. Synthesis 2001, 841.
(1) Harvey, R. G. Polycyclic Aromatic Hydrocarbons: Chemistry and
Carcinogenicity; Cambridge University Press: Cambridge, England, 1991.
(2) (a) Gelboin, H. V. Physiol. ReV. 1980, 34, 1107. (b) Conney, A. H.
Cancer Res. 1982, 42, 4875. (c) Cooper, C. S.; Grover, P. L.; Sims, P.
Prog. Drug. Metab. 1983, 7, 295. (d) Guengerich, F. P. Carcinogenesis
2000, 21, 345-351. (e) Cavalieri, E. L.; Rogan, E. G. One-electron oxidation
in aromatic hydrocarbon carcinogenesis. In Polycyclic Hydrocarbons and
Carcinogenesis; Harvey, R. G., Ed.; American Chemical Society: Wash-
ington, DC, 1985; pp 289-305. (f) Penning, T. M.; Burczynski, M. E.;
Hung, C-F.; McCoull, K. D.; Palackal, N. T.; Tsuruda, L. S. Chem. Res.
Toxicol. 1999, 12, 1.
(9) Sharma, A. K.; Kumar, S.; Amin, S. J. Org. Chem. 2004, 69, 3979.
(10) Desai, D.; Sharma, A. K.; Lin, J.-M.; Krzeminski, J.; Pimental, M.;
El-Bayoumy, K.; Nesnow, S.; Amin, S. Chem. Res. Toxicol. 2002, 15, 964.
(11) Sharma, A. K.; Amin, S.; Kumar, S. Polycyclic Aromat. Compd.
2002, 22, 277.
(12) Desai, D.; Sharma, A. K.; Lin, J.-M.; El-Bayoumy, K.; Amin, S.;
Pimentel, M.; Nesnow, S. Polycyclic Aromat. Compd. 2002, 22, 267.
(13) Sharma, A. K.; Lin, J-M.; Desai, D.; Amin, S. J. Org. Chem. 2005,
70, 4962.
(3) (a) Hecht, S. S.; El-Bayoumy, K.; Rivenson, A.; Amin, S. Cancer
Res. 1994, 54, 21. (b) Levin, W.; Wood, A. W.; Chang, R. L.; Ittah, Y.;
Croisy-Delcey, M.; Yagi, H.; Jerina, D. M.; Conney, A. H. Cancer Res.
1980, 40, 3910-3914. (c) Amin, S.; Desai, D.; Dai, W.; Harvey, R. G.;
Hecht, S. S. Carcinogenesis 1995, 16, 2813. (d) Amin, S.; Krzeminski, J.;
Rivenson, A.; Kurtzke, C.; Hecht, S. S.; El-Bayoumy, K. Carcinogenesis
1995, 16, 1971. (e) Amin, S.; Lin, J. M.; Krzeminski, J.; Boyiri, T.; Desai,
D.; El-Bayoumy, K. Chem. Res. Toxicol. 2003, 16, 227. (f) Nelson, G.;
Ross, J. A.; Pimentel, M.; Desai, D.; Sharma, A. K.; Amin, S.; Nesnow, S.
Cancer Lett. 2007; 247, 309.
(14) (a) Krzeminski, J.; Lin, J.-M.; Amin, S.; Hecht, S. S. Chem. Res.
Toxicol. 1994, 7, 125. (b) Desai, D.; Krzeminski, J.; Lin, J.-M.; Jerina, D.;
Amin, S. Polycyclic Aromat. Compd. 1999, 13, 301. (c) Misra, B.; Amin,
S. J. Org. Chem. 1990, 55, 4478. (c) Liu, L.; Yang, B.; Katz, T. J.;
Poindexter, M. K. J. Org. Chem. 1991, 56, 3769.
(15) For recent reviews, see: (a) Hassan, J.; Sevignon, M.; Gozzi, C.;
Schulz, E.; Lamaire, M. Chem. ReV. 2002, 102, 1359. (b) Kotha, S.; Lahiri,
K.; Kashinath, D. Tetrahedron 2002, 58, 9633. (c) Pershichini, P. J. Curr.
Org. Chem. 2003, 7, 1725. (d) Miura, M. Angew. Chem., Int. Ed. 2004, 43,
2201. (e) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419.
10.1021/jo701665j CCC: $37.00 © 2007 American Chemical Society
Published on Web 10/16/2007
J. Org. Chem. 2007, 72, 8987-8989
8987