C O M M U N I C A T I O N S
tions in one simple self-assembly step. We are currently extending
this strategy to combine coordination-driven self-assembly with
other noncovalent assembly methodologies to further explore its
application to the construction of multifunctional supramolecular
architectures.
Acknowledgment. P.J.S. thanks the NIH (GM-057052) and the
NSF (CHE-0306720) for financial support. B.H.N. thanks the NIH
(GM-080820) for financial support. We thank Prof. Mei-Xiang
Wang and Dr. Han-Yuan Gong for their help with the calculation
of thermodynamic binding constants. D.C.M. and M.M.L thank
NCBC and NCSU Chemistry for generous financial support.
Figure 6. Schematic representation of the one-pot self-assembly of tris-
[2]pseudorotaxanes 7 and 8 by using Method III.
Supporting Information Available: Synthesis and analytic data
of 1, hexagonal tris-DB24C8 derivatives 5 and 6, and tris[2]-
pseudorotaxanes 7 and 8, experimental data for 1H NMR titration
experiments, and computational procedures and structures for 5, 6, and
7 obtained from modeling. This material is available free of charge
References
(1) (a) Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1304-1319. (b)
Philip, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1155-
1196. (c) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-
2421. (d) Lehn, J. M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4763-
4768. (e) Hori, A.; Yamashita, K.-I.; Fujita, M. Angew. Chem., Int. Ed.
2004, 43, 5016-5019.
(2) (a) Bassani, D. M.; Lehn, J.-M.; Serroni, S.; Puntoriero, F.; Campagna,
S.; Chem.sEur. J. 2003, 9, 5936-5946. (b) Uppadine, L. H.; Lehn, J.-
M.; Angew. Chem., Int. Ed. 2004, 43, 240-243. (c) Uppadine, L. H.;
Gisselbrecht, J.-P.; Kyritsakas, N.; Na¨ttinen, K.; Rissanen, K.; Lehn, J.-
M. Chem.sEur. J. 2005, 11, 2549-2565.
Figure 7. Simulated molecular model of tris[2]pseudorotaxane 8 optimized
with the MMFF force field. Color scheme: C ) gray, O ) red, N ) blue,
+
P ) purple, Pt ) yellow, and R2NH2 hydrogen atoms ) white; all other
hydrogen atoms have been removed for clarity.
perhaps best demonstrated by yet a third method of assembly.
Simply mixing a 1:1:1 ratio of the three different components
(Method III, Figure 6) also gives tris[2]pseudorotaxanes 7 and 8,
whose structures were confirmed by multinuclear NMR (1H and
31P) analysis. In this process of construction, nine subunits are
brought together to spontaneously form discrete, highly symmetric
species as directed by multiple noncovalent interactions.11 These
results demonstrate a number of ways that multiple complementary
building blocks exhibiting a variety of orthogonal noncovalent
molecular recognition motifs are able to self-assemble into discrete
structures according to the specific information encoded within the
individual components, a synthetic analogue to similar processes
that have been investigated extensively in biological systems.4
Molecular force-field simulations were used to gain further
insight into the structural characteristics of hexagonal hosts 5 and
6 and cavity-cored tris[2]pseudorotaxanes 7 and 8.12 A 1.0 ns
molecular dynamics simulation (MMFF force field) was used to
equilibrate supramolecules 5-8, followed by energy minimization
of the resulting structures to full convergence. The modeled structure
of tris[2]pseudorotaxane 8, for example, is shown in Figure 7 (for
compounds 5-7, see Supporting Information). Simulations revealed
very similar planar hexagonal structures for each supramolecule.
The addition of dibenzylammonium to tris-DB24C8 hosts 5 and 6
does not disrupt the underlying hexagonal scaffolds as ammonium
salts are complexed by their pendant DB24C8 macrocycles, further
illustrating the orthogonality of the interactions involved during
self-assembly. Simulations reveal internal diameters of 3.2 and 2.9
nm for 7 and 8, respectively (see Supporting Information).
(3) (a) Pollino, J. M.; Stubbs, L. P.; Weck, M. Polym. Prepr. 2003, 44, 730-
731. (b) Pollino, J. M.; Stubbs, L. P.; Weck, M. J. Am. Chem. Soc. 2004,
126, 563-567. (c) Hofmeier, H.; El-ghayoury, A; Schenning, A. P. H.
J.; Schubert, U. S. Chem. Commun. 2004, 318-319. (d) Hofmeier, H.;
Hoogenboom, R.; Wouters, M. E. L.; Schubert, U. S. J. Am. Chem. Soc.
2005, 127, 2913-2921.
(4) Kushner, D. J. Bacteriol. ReV. 1969, 33, 302-345.
(5) (a) Molecular Catenanes, Rotaxanes and Knots; Sauvage, J.-P., Dietrich-
Buchecker, C., Eds.; Wiley-VCH: Weinheim, Germany, 1999. (b) Raymo,
F. M.; Stoddart, J. F. Chem. ReV. 1999, 99, 1643-1663. (c) Balzani, V.;
Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000,
39, 3348-3391. (d) Collin, J.-P.; Dietrich-Buchecker, C.; Gavio`a, P.;
Jimenez-Molero, M. C.; Sauvage, J.-P. Acc. Chem. Res. 2001, 34, 477-
487. (e) Schalley, C. A.; Beizai, K.; Vo¨gtle, F. Acc. Chem. Res. 2001, 34,
465-476. (f) Badjic´, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J.
F. Science 2004, 303, 1845-1849. (g) Zhu, X.-Z.; Chen, C.-F. J. Am.
Chem. Soc. 2005, 127, 13158-13159. (h) Huang, F.; Nagvekar, D. S.;
Slebodnick, C.; Gibson, H. W. J. Am. Chem. Soc. 2005, 127, 484-485.
(6) (a) Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502-518. (b)
Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. ReV. 2000, 100, 853-908.
(c) Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972-983. (d)
Schwab, P. F. H.; Levin, M. D.; Michl, J. Chem. ReV. 1999, 99, 1863-
1934. (e) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40,
2022-2043. (f) Cotton, F. A.; Lin, C.; Murillo, C. A. Acc. Chem. Res.
2001, 34, 759-711. (g) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B.
Acc. Chem. Res. 2005, 38, 369-378. (h) Fiedler, D.; Leung, D. H.;
Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 349-360.
(7) (a) Gianneschi, N. C.; Tiekink, E. R. T.; Rendina, L. M. J. Am. Chem.
Soc. 2000, 122, 8474-8479. (b) Kim, D.; Paek, J. H.; Jun, M.-J.; Lee, J.
Y.; Kang, S. O.; Ko, J. Inorg. Chem. 2005, 44, 7886-7894. (c) Petitjean,
A.; Kyritsakas, N.; Lehn, J.-M.; Chem. Commun. 2004, 24, 1168-1169.
(8) (a) Yang, H.-B.; Das, N.; Huang, F.; Hawkridge, A. M.; Muddiman, D.
C.; Stang, P. J. J. Am. Chem. Soc. 2006, 128, 10014-10015. (b) Yang,
H.-B.; Hawkridge, A. M.; Huang, S. D.; Das, N.; Bunge, S. D.; Muddiman,
D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 2120-2129.
(9) (a) Ashton, P. R.; Campbell, P. J.; Chrystal, E. J. T.; Glink, P. T.; Menzer,
S.; Philip, D.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; Williams, D. J.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1865-1869. (b) Ashton, P. R.;
Campbell, P. J.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Philip, D.;
Spencer, N.; Stoddart, J. F.; Tasker, P. A.; Williams, D. J. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1869-1871. (c) Arico´, F.; Badjic´, J. D.; Cantrill,
S. J.; Flood, A. H.; Leung, K. C.-F.; Liu, Y.; Stoddart, J. F. Top. Curr.
Chem. 2005, 279, 203-259.
(10) Bourson, J.; Pouget, J.; Valeur, B. J. Phys. Chem. 1993, 97, 4552-4557.
(11) Upon stirring at 298 K for approximately 48 h, the 1H NMR spectra of
assemblies 7 and 8 do not show any significant change, demonstrating
the stability of these novel supramolecular assemblies.
Herein, we have combined coordination-driven self-assembly
with the crown ether-dialkylammonium binding motif to generate
novel tris[2]pseudorotaxanes in which the molecular structures
incorporate a discrete hexagonal cavity as their main scaffold and
pendant pseudorotaxanes at alternate vertexes. During self-assembly,
both hydrogen bonding and metal coordination simultaneously play
essential roles. This methodology demonstrates that novel artificial
supramolecular architectures can be synthesized from several
different components via multiple, orthogonal noncovalent interac-
(12) All attempts to grow X-ray quality single crystals of hexagonal hosts (5
and 6) and hexagonal cavity-cored tris[2]pseudorotaxanes (7 and 8) have
so far proven unsuccessful.
JA073744M
9
J. AM. CHEM. SOC. VOL. 129, NO. 46, 2007 14189