6160 Organometallics, Vol. 26, No. 25, 2007
Vicente et al.
NCl, and the filtrate was concentrated (1 mL). Addition of Et2O
(10 mL) gave a suspension that was filtered off, washed with Et2O
(5 mL), and air-dried to give 21 as a yellow solid. Yield: 113 mg,
86%; mp 295-300 °C. IR (cm-1): ν(CdO) 1650, ν(Pt-Cl) 326.
1H NMR (400 MHz, CDCl3): δ 9.68 (d, 1 H, H6′, 3JHH ) 6.3 Hz,
Hz). 31P{1H} NMR (121 MHz, CDCl3): δ 8.86 (1JPPt ) 4601 Hz).
195Pt{1H} NMR: δ (85.88 MHz, CDCl3): -3648 (d, 1JPPt ) 4601
Hz). Anal. Calcd for C26H27O3PPt: C, 50.90; H, 4.44. Found: C,
51.40; H, 4.63.
Synthesis of [Pt{CH2C(O)Me}(acac)(CNXy)] (25). To a solu-
tion of 22 (32 mg, 0.08 mmol) in CH2Cl2 (1 mL) was added XyNC
(11 mg, 0.08 mmol). The pale yellow solution was concentrated to
dryness, and the residue was extracted with n-pentane (2 mL) and
filtered. The filtrate was concentrated to dryness under vacuum for
5 h to give 25 as a colorless solid. Yield: 20 mg, 50%; mp 80-83
°C. IR (cm-1): ν(CtN) 2179; ν(CdO) 1675, 1582, 1521. 1H NMR
(400 MHz, CDCl3): δ 7.18 (m, 1 H, Xy), 7.10 (m, 2 H, Xy), 5.52
3
2JHPt ) 44.9 Hz), 9.47 (d, 1 H, H6, JHH ) 5.9 Hz), 7.88 (d, 1 H,
4
4
H3, JHH ) 1.4 Hz), 7.84 (d, 1 H, H3′, JHH ) 1.4 Hz), 7.59 (dd,
1 H, H5, 4JHH ) 1.4 Hz, 3JHH ) 5.9 Hz), 7.56 (dd, 1 H, H5’, 4JHH
3
2
) 1.4 Hz, JHH ) 6.3 Hz), 3.34 (s, 2 H, PtCH2, JHPt ) 108 Hz),
2.31 (s, MeC(O)), 1.43 (s, 9 H, Bu), 1.41 (s, 9 H, Bu). 13C{1H}
t
t
2
NMR (100.8 MHz, CDCl3): δ 216.3 (CO, JCPt ) 42 Hz), 163.4
(C, dbbpy), 162.3 (C, dbbpy), 157.1 (C, dbbpy), 154.9 (C, dbbpy,
2
2JCPt ) 40 Hz), 151.3 (C6′, 2JCPt ) 34 Hz), 147.8 (C6), 124.9 (C5′,
(s, 1 H, CH, acac), 3.14 (s, 2 H, CH2, JHPt ) 112 Hz), 2.47 (s, 6
3JCPt ) 49 Hz), 123.9 (C5), 119.0 (C3′, 3JCPt ) 25 Hz), 118.3 (C3),
H, Me, Xy), 2.21 (s, 3 H, MeC(O)CH2), 2.02 (s, 3 H, Me, acac),
1.99 (s, 3 H, Me, acac). 13C{1H} NMR (75.45 MHz, CDCl3): δ
213.8 (CO, 2JCPt ) 47 Hz), 186.8 (CO, acac, 2JCPt ) 21 Hz), 183.7
1
35.6 (CMe3), 30.0 (MeC(O)), 30.0 (CMe3), 19.7 (PtCH2, JCPt
)
594 Hz). 195Pt{1H} NMR (86.18 MHz, CDCl3): δ -2953. Anal.
Calcd for C21H29ClN2OPt: C, 45.36; H, 5.26; N, 5.04. Found: C,
45.03; H, 5.36; N, 5.03.
2
(CO, acac, JCPt ) 16 Hz), 135.5 (C, Xy), 128.8 (CH, Xy), 127.8
3
(CH, Xy), 101.9 (CH, acac, JCPt ) 67 Hz), 30.3 (MeC(O)), 27.8
3
3
(Me, acac, JCPt ) 12 Hz), 27.1 (Me, acac, JCPt ) 34 Hz), 18.2
Synthesis of [Pt{CH2C(O)Me}(acac)(C2H4)] (22). To a solution
of 1 (52 mg, 0.12 mmol) in CH2Cl2 (4 mL), [Tl(acac)] (39 mg,
0.13 mmol) was added. After stirring for 15 min, the suspension
was concentrated to dryness, and the residue was extracted with
Et2O (2 × 5 mL). The resulting solution was concentrated to
dryness, and the solid treated for 2 h under vacuum to give 22 as
a pale yellow solid that was stored at -30 °C. Yield: 44 mg, 95%;
(Me, Xy), 14.1 (PtCH2, JCPt ) 612 Hz). 195Pt{1H} NMR (85.88
1
MHz, CDCl3): δ -3355 (t {1:1:1}, 2JPtN ) 146 Hz). Anal. Calcd
for C17H21NO3Pt: C, 42.32; H, 4.39; N, 2.90. Found: C, 42.70;
H, 4.49; N, 3.07.
Crystallography. Crystals were measured on a Bruker Smart
APEX machine. Data were collected using monochromated Mo KR
radiation in w scan. The structures of 3, 13, 14, and [PtCl2(CNXy)2]
were solved by direct methods, that of 1 and 8trans by the heavy
atom method. All were refined anisotropically on F2. Restraints to
local aromatic-ring symmetry or light-atom displacement factor
components were applied in some cases. The ordered methyl groups
were refined using rigid groups, the NH (13 and 14) was refined
as free, and the other hydrogens were refined using a riding mode.
The methyl (C3) of the acetonyl ligand of compound 8trans is
disordered over two positions, ca. 54:46.
Computational Details. Density functional calculations were
carried out using the Gaussian 03 package.26 The hybrid density
functional B3LYP method was applied.27 Effective core potentials
(ECP) and their associated double-ú basis set, LANL2DZ, were
used for platinum atoms.28 Similar description was used for heavy
elements as Cl or P, supplemented with an extra d-polarization
function.29 The basis set for the light elements as C, N, O, and H
was 6-31G*.30 Geometry optimizations were carried out on the full
potential-energy surface, without symmetry restrictions, and they
were characterized by a vibrational analysis. Since decoordination
of chloride from TPBC is always unfavored in gas phase for
1
mp 44 °C. IR (cm-1): ν(CdO) 1674, 1581, 1518. H NMR (400
MHz, CDCl3): δ 5.49 (s, 1 H, CH), 3.86 (s, 4 H, C2H4, 2JHPt ) 67
2
Hz), 2.53 (s, 2 H, PtCH2, JHPt ) 106.4 Hz), 2.15 (s, 3 H, MeC-
(O)CH2), 2.10 (s, 3 H, Me, acac), 1.95 (s, 3 H, Me, acac). 13C{1H}
2
NMR (100.8 MHz, CDCl3): δ 213.7 (CO, JCPt ) 49 Hz), 188.5
3
(CO, acac), 183.4 (CO, acac), 101.3 (CH, JCPt ) 61 Hz), 62.5
1
(C2H4, JCPt ) 238 Hz), 30.4 (MeC(O)CH2), 28.3 (s, Me, acac),
26.8 (s, Me, acac), 16.2 (PtCH2, 1JCPt ) 663 Hz). 195Pt{1H} NMR
(86.18 MHz, CDCl3): δ -3204.7. Anal. Calcd for C10H16O3Pt: C,
31.66; H, 4.25. Found: C, 31.52; H, 4.22.
Synthesis of [Pt{CH2C(O)Me}(acac)(CO)] (23). A stream of
CO was bubbled at atmospheric pressure into a solution of 22 (60
mg, 0.16 mmol) in CH2Cl2 (3 mL) for 15 min. The mixture was
filtered through Celite, and the filtrate was concentrated to dryness
under vacuum to give 23 as a pale yellow solid that was stored at
-30 °C. Yield: 50 mg, 84%; mp 81-84 °C. IR (cm-1): ν(CtO)
1
2093, ν(CdO) 1681, 1573, 1523. H NMR: (400 MHz, CDCl3):
2
δ 5.60 (s, 1 H, CH), 3.14 (s, 2 H, CH2, JHPt ) 109 Hz), 2.21 (s,
3 H, MeC(O)CH2), 2.08 (s, 3 H, Me, acac), 2.06 (s, 3 H, Me, acac).
13C{1H} NMR (75.45 MHz, CDCl3): δ 212.1 (MeC(O)CH2, 2JCPt
) 46 Hz), 188.6 (CO, acac, 2JCPt ) 22 Hz), 183.7 (CO, acac, 2JCPt
) 16 Hz), 157.4 (CO), 102.4 (CH, 3JCPt ) 66 Hz), 30.5 (MeC(O)-
(26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian
03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(27) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Lee, C.; Yang, W.;
Parr, R. G. Phys. ReV. B 1988, 37, 785.
(28) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(29) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. Ho¨llwarth,
A.; Bo¨hme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Ko¨hler,
K. F.; Stegman, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993,
208, 237.
(30) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.;
DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
3
3
CH2), 27.8 (Me, acac, JCPt ) 14 Hz), 26.7 (Me, acac, JCPt ) 38
Hz), 16.9 (CH2, JCPt ) 595 Hz). 195Pt{1H} NMR (85.88 MHz,
CDCl3): δ -3598. Anal. Calcd for C9H12O4Pt: C, 28.50; H, 3.19.
Found: C, 28.60; H, 3.35.
1
Synthesis of [Pt{CH2C(O)Me}(acac)(PPh3)] (24). To a solution
of 22 (27.7 mg, 0.07 mmol) in CH2Cl2 (2 mL), PPh3 (19.5 mg,
0.07 mmol) was added. The reaction mixture was filtered through
Celite, and the filtrate was concentrated to dryness. The residue
was stirred with Et2O (2 mL), and the solvent was removed under
vacuum for 6 h to give 24 as a colorless solid. Yield: 44 mg, 97%;
mp 112-119 °C. IR (cm-1): ν(CdO) 1657, 1571, 1521. 1H NMR
(300 MHz, CDCl3): δ 7.71-7.64 (m, 9 H, Ph), 7.44-7.39 (m, 6
H, Ph), 5.40 (s, 1 H, CH, acac), 2.58 (d, 2 H, CH2, 3JHP ) 3.3 Hz,
2JHPt ) 100 Hz), 2.03 (s, 3 H, MeC(O)CH2), 1.97 (s, 3 H, Me,
acac), 1.57 (s, 3 H, Me, acac). 13C{1H} NMR (100.81 MHz,
CDCl3): δ 215.6 (MeC(O)CH2), 184.9 (CO, acac), 183.4 (CO,
acac), 134.6 (d, Corto, PPh3, 2JCP ) 11 Hz), 130.6 (d, CHpara, PPh3,
1
4JCP ) 2 Hz), 128.7 (d, Cipso, PPh3, JCP ) 48 Hz), 101.1 (CH,
4
3JCPt ) 61 Hz), 31.6 (Me, acac), 27.8 (d, MeC(O)CH2, JCP ) 6
2
1
Hz), 27.5 (Me, acac), 14.0 (d, PtCH2, JCP ) 6 Hz, JCPt ) 672.7