10.1002/anie.201901456
Angewandte Chemie International Edition
COMMUNICATION
understood, the 1a (N = 25.54) and 1b (N = 17.68) P-H agents,
which are generated in-situ, were reported to be able to catalyze
the imine reduction by pinacolborane [HB(pin)] in 98% and 25%
yields, respectively.[5a] The different performances of 1f between
the reactions with stronger electrophiles (such as iminium ions,
active imines and quinone methides) and with less electrophilic
α,β-unsaturated esters can be easily understood by following the
same line of argument.
Acknowledgements
We are grateful for the financial grants from National Natural
Science Foundation of China (Nos. 21672124, 21602116,
21772098, 91745101), and Tsinghua University Initiative
Scientific
Research
Program
(Nos.
20131080083,
20141081295).
Surprisingly, the analogous reaction of 1d derivative with a
similar N value as 1b (18.74 vs 17.68) was reported incapable.
This discrepancy in catalytic performance could, however, not be
simply viewed as a collapse of the above mentioned judging-
rule. Instead, it may be used as a handy tool for probing other
undetected factors at work in complex systems. Although
attempts to untangle similar puzzles occasionally appeared in
literature,[5a, 9a] more intensive research in future to identify the
insights behind abnormal observations should be highly
recommended.
Keywords: P-H hydride • diazaphospholene • nucleophilicity
parameter • linear free-energy relationship • structure–reactivity
relationship
[1]
(a) Z. Xu, P. Wang, Q. Chen, M. Cai, J. Organomet. Chem. 2018, 866,
50-58; (b) M. M. Rauhut, I. Hechenbleikner, H. A. Currier, F. C.
Schaefer, V. P. Wystrach, J. Am. Chem. Soc. 1959, 81, 1103-1107; (c)
A. D. Sadow, A. Togni, J. Am. Chem. Soc. 2005, 127, 17012-17024; (d)
Y. Moglie, M. J. González-Soria, I. Martín-García, G. Radivoy, F.
Alonso, Green Chem. 2016, 18, 4896-4907.
[2]
(a) D. Gudat, A. Haghverdi, M. Nieger, Angew. Chem. Int. Ed. 2000, 39,
3084-3086; (b) D. Herrmannsdörfer, M. Kaaz, O. Puntigam, J. Bender,
M. Nieger, D. Gudat, Eur. J. Inorg. Chem. 2015, 2015, 4819-4828; (c)
D. Gudat, Dalton Trans. 2016, 45, 5896-5907; (d) D. Gudat, Acc. Chem.
Res. 2010, 43, 1307-1316.
Table 3. Reactions of P-H reagents 1a, 1d and 1f with typical electrophiles in
CH3CN at 20 °C . Reaction conditions: 1 (0.2 mmol), nucleophiles (0.2 mmol),
CH3CN or CD3CN (1 mL), 20 °C, 30 min.
[3]
[4]
[5]
S. Burck, D. Gudat, M. Nieger, W.-W. Du Mont, J. Am. Chem. Soc.
2006, 128, 3946-3955.
S. Ilic, A. Alherz, C. B. Musgrave, K. D. Glusac, Chem. Soc. Rev. 2018,
47, 2809-2836.
(a) M. R. Adams, C. H. Tien, B. S. N. Huchenski, M. J. Ferguson, A. W.
H. Speed, Angew. Chem. Int. Ed. 2017, 56, 6268-6271; (b) C. C.
Chong, B. Rao, R. Kinjo, Acs. Catal. 2017, 7, 5814-5819.
C. C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54, 190-
194.
Electrophile
E
1a
1d
1f
Product
-7.15
>90%[a]
>90%[a]
>90%[a]
-8.00
90%[b]
92%[b]
81%[b]
87%[b]
87%[b]
[6]
[7]
C. C. Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 2014, 53, 3342-
[c]
-11.32
+
3346.
[8]
[9]
C. C. Chong, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54, 12116-12120.
(a) B. Rao, C. C. Chong, R. Kinjo, J. Am. Chem. Soc. 2018, 140, 652-
656; (b) T. Hynes, E. N. Welsh, R. McDonald, M. J. Ferguson, A. W. H.
Speed, Organometallics 2018, 37, 841-844.
[c]
-15.09
+
>90%[a]
55%[a,f]
[10] (a) M. R. Adams, C.-H. Tien, R. McDonald, A. W. H. Speed, Angew.
Chem. Int. Ed. 2017, 56, 16660-16663; (b) S. Miaskiewicz, J. H. Reed,
P. A. Donets, C. C. Oliveira, N. Cramer, Angew. Chem. Int. Ed. 2018,
57, 4039-4042.
[11] (a) X.-Q. Zhu, Y. Tan, C.-T. Cao, J. Phys. Chem. B 2010, 114, 2058-
2075; (b) D. Richter, Y. Tan, A. Antipova, X.-Q. Zhu, H. Mayr, Chem.
Asian J. 2009, 4, 1824-1829; (c) X.-Q. Zhu, M.-T. Zhang, A. Yu, C.-H.
Wang, J.-P. Cheng, J. Am. Chem. Soc. 2008, 130, 2501-2516; (d) X.-Q.
Zhu, Y. Yang, M. Zhang, J.-P. Cheng, J. Am. Chem. Soc. 2003, 125,
15298-15299; (e) J.-D. Yang, B.-L. Chen, X.-Q. Zhu, J. Phys. Chem. B
2018, 122, 6888-6898; (f) J. Zhang, J. D. Yang, H. Zheng, X. S. Xue, H.
Mayr, J. P. Cheng, Angew. Chem. Int. Ed. 2018, 57, 12690-12695; (g)
-16.11
-22.77[g]
-24.52[g]
88%[b]
Quant.[d]
>90%[a]
87%[b]
70%[a,f]
<10%[a,e,f]
0
<10%[a,e,f]
0
[a] Yields were determined by 1H NMR analysis using CH2Br2 as the internal
standard. [b] Isolated yields. [c] Reactions expected, but not tested. [d] From
reference 5b. [e] With some unidentified side products. [f] Reaction time: 3 h.
[g] Estimated values from similar structures in Figure 4.
Internet
Bond-energy
Databank
(iBonD)
Home
Page:
[12] H. Mayr, M. Patz, Angew. Chem. Int. Ed. 1994, 33, 938-957.
[13] H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf,
R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc.
2001, 123, 9500-9512.
[14] (a) R. Lucius, R. Loos, H. Mayr, Angew. Chem. Int. Ed. 2002, 41, 91-95;
(b) D. Richter, N. Hampel, T. Singer, A. R. Ofial, H. Mayr, Eur. J. Org.
Chem. 2009, 2009, 3203-3211.
Besides the product analyses, kinetic examinations (k2) of
the reactions of diazaphospholenes 1 with several electrophiles
3 (Table S36) were also performed, which appeared to match
the values predicted by eq. (1).
In summary, the first P-H type nucleophilicity scale in terms
of the Mayr’s N and sN values for the diazaphospholenium ions 1
was established to be in an N range of 13.5 ~ 25.5, with N of
25.5 for 1a as the most nucleophilic hydride donor ever
quantified by the Mayr equation. Successful applications of the
empirical criterion of E + N > -3 verified the good value of these
parameters in rationalizing experimental observations and
predicting feasibility of reactions, adding confidence for their use
[15] R. B. King, P. M. Sundaram, J. Org. Chem. 1984, 49, 1784-1789.
[16] (a) B. Maji, M. Breugst, H. Mayr, Angew. Chem. Int. Ed. 2011, 50, 6915-
6919; (b) O. Kaumanns, R. Appel, T. Lemek, F. Seeliger, H. Mayr, J.
Org. Chem. 2009, 74, 75-81; (c) Z. Li, Q. Chen, P. Mayer, H. Mayr, J.
Org. Chem. 2017, 82, 2011-2017; (d) D. S. Allgäuer, P. Mayer, H. Mayr,
J. Am. Chem. Soc. 2013, 135, 15216-15224.
[17] (a) M. Horn, L. H. Schappele, G. Lang-Wittkowski, H. Mayr, A. R. Ofial,
Chem. Eur. J. 2013, 19, 249-263; (b) H. Mayr, G. Lang, A. R. Ofial, J.
Am. Chem. Soc. 2002, 124, 4076-4083; (c) V. Morozova, P. Mayer, G.
Berionni, Angew. Chem. Int. Ed. 2015, 54, 14508-14512.
[18] For a comprehensive database of electrophilicity parameters E and
nucleophilicity
parameters
N
and
sN,
see:
as
a
guiding index in the development of new
diazaphospholenium-like
reagents
and
the
relevant
transformations.
This article is protected by copyright. All rights reserved.