1
6 K. Steiner, R. Novotny, D. B. Werz, K. Zarschler, P. H. Seeberger,
A. Hofinger, P. Kosma, C. Schäffer and P. Messner, J. Biol. Chem., 2008,
283, 21120–21133.
7 A. Turska-Szewczuk, A. Kozinska, R. Russa and O. Holst, Carbohydr.
Res., 2010, 345, 680–684.
scaling factor κ between 10 and 34. H NMR chemical shifts
n
and J coupling constants were refined from 1D spectra using
the PERCH NMR software (PERCH Solutions Ltd., Kuopio,
Finland).
8 A. Molinaro, M.-A. Newman, R. Lanzetta and M. Parrilli, Eur. J. Org.
Chem., 2009, 5887–5896.
9 P.-E. Jansson, L. Kenne and T. Wehler, Carbohydr. Res., 1987, 166, 271–
282.
Computer simulations
10 J.-R. Brisson, H. Baumann, A. Imberty, S. Pérez and H. J. Jennings, Bio-
chemistry, 1992, 31, 4996–5004.
11 M. Michela Corsaro, C. De Castro, T. Naldi, M. Parrilli, J. M. Tomás and
M. Regué, Carbohydr. Res., 2005, 340, 2212–2217.
12 I. Sánchez-Medina, M. Frank, C.-W. von der Lieth and J. P. Kamerling,
Org. Biomol. Chem., 2009, 7, 280–287.
13 B. Coxon, N. Sari, G. Batta and V. Pozsgay, Carbohydr. Res., 2000, 324,
53–65.
14 M.-J. Clément, A. Imberty, A. Phalipon, S. Pérez, C. Simenel,
L. A. Mulard and M. Delepierre, J. Biol. Chem., 2003, 278, 47928–
47936.
15 V. Pozsgay, N. Sari and B. Coxon, Carbohydr. Res., 1998, 308, 229–238.
16 G. Batta and A. Lipták, J. Chem. Soc., Chem. Commun., 1985, 368–370.
17 A. Bax and R. Freeman, J. Am. Chem. Soc., 1982, 104, 1099–1100.
18 C. Bauer, R. Freeman and S. Wimpers, J. Magn. Reson., 1984, 58, 526–
532.
19 J.-M. Nuzillard and J.-M. Bernassau, J. Magn. Reson., Ser. B, 1994, 103,
284–287.
20 L. Poppe, S. Sheng and H. van Halbeek, J. Magn. Reson., Ser. A, 1994,
111, 104–107.
21 T. Nishida, G. Widmalm and P. Sándor, Magn. Reson. Chem., 1995, 33,
596–599.
22 R. T. Williamson, B. L. Márquez, W. H. Gerwick and K. E. Kövér,
Magn. Reson. Chem., 2000, 38, 265–273.
23 T. Parella and J. Belloc, J. Magn. Reson., 2001, 148, 78–87.
24 R. T. Williamson, B. L. Marquez, W. H. Gerwick, G. E. Martin and
V. V. Krishnamurthy, Magn. Reson. Chem., 2001, 39, 127–132.
25 D. Uhrín, J. Magn. Reson., 2002, 159, 145–150.
26 P. Vidal, N. Esturau, T. Parella and J. F. Espinosa, J. Org. Chem., 2007,
72, 3166–3170.
For the molecular dynamics (MD) simulations CHARMM57
software was used employing a CHARMM22 type of force field
modified for carbohydrates and referred to as PARM22/SU01.37
Initial conditions were prepared by placing each disaccharide in
a cubic water box of length 29.97 Å containing 900 modified
TIP3P water molecules.58 The hexasaccharide was placed in a
water box of length 50 Å containing 3921 modified TIP3P water
molecules. The solvent molecules that were closer than 2.5 Å to
any solute atom were removed resulting in 868 water molecules
for R2R, 864 water molecules for R3R, and 3838 water mol-
ecules for the hexasaccharide. Energy minimization was per-
formed with Steepest Descent, 200 steps, followed by Adopted
Basis Newton–Raphson until the root-mean-square gradient was
less than 0.01 kcal·mol−1·Å−1. The initial velocities were
assigned at 105 K, followed by heating with 5 K increments
during 8 ps to 310 K, where the systems were equilibrated for 1
ns. The production runs were performed for 100 ns at 310 K.
Simulations were carried out at the Center for Parallel Compu-
ters, KTH, Stockholm, using 1 node with two quad-core pro-
cessors per node. For the disaccharides parallel version C34b2
was used and for the hexasaccharide version C35b4 was used.
The CPU time was approximately 2.5 h per ns for the disacchar-
ides and 6.5 h per ns for the hexasaccharide.
The potential energy maps were computed from a 15° grid
search over the entire glycosidic torsion angle space using a
dielectric constant of 3. Energy minimization was performed
with Steepest Descent, 50 steps, followed by Adopted Basis
Newton–Raphson until the root-mean-square gradient was less
than 0.01 kcal·mol−1·Å−1. The nonasaccharide was built by
CarbBuilder59 as part of CASPER60 and visualization of oligo-
saccharides was made using PyMOL (The PyMOL Molecular
Graphics System, Version 0.99rc6, Schrödinger, LLC).
27 G. Widmalm, R. A. Byrd and W. Egan, Carbohydr. Res., 1992, 229,
195–211.
28 B. J. Hardy, W. Egan and G. Widmalm, Int. J. Biol. Macromol., 1995, 17,
149–160.
29 B. J. Hardy, S. Bystricky, P. Kovac and G. Widmalm, Biopolymers, 1997,
41, 83–96.
30 C. Landersjö, B. Stevensson, R. Eklund, J. Östervall, P. Söderman,
G. Widmalm and A. Maliniak, J. Biomol. NMR, 2006, 35, 89–101.
31 P. Söderman, S. Oscarson and G. Widmalm, Carbohydr. Res., 1998, 312,
233–237.
32 R. K. Ness, G. F. Hewitt Jr. and C. S. Hudson, J. Am. Chem. Soc., 1951,
73, 296–300.
33 H. Rainer, H.-D. Scharf and J. Runsink, Liebigs Ann. Chem., 1992, 103–
107.
34 T. Norberg, S. Oscarson and M. Szöni, Carbohydr. Res., 1986, 152, 301–
304.
35 P. J. Garegg and T. Norberg, Acta Chem. Scand., Ser. B, 1979, 33, 116–
118.
36 H. Thøgersen, R. U. Lemieux, K. Bock and B. Meyer, Can. J. Chem.,
1982, 60, 44–57.
Acknowledgements
This work was supported by grants from the Swedish Research
Council (VR), The Knut and Alice Wallenberg Foundation, and
Carl Tryggers Stiftelse för Vetenskaplig Forskning. The Center
for Parallel Computers (PDC), Stockholm, Sweden, is thanked
for computing resources.
37 R. Eklund and G. Widmalm, Carbohydr. Res., 2003, 338, 393–398.
38 P.-E. Jansson, L. Kenne and G. Widmalm, Acta Chem. Scand., 1991, 45,
517–522.
39 T. Nishida, G. Widmalm and P. Sándor, Magn. Reson. Chem., 1996, 34,
377–382.
40 T. E. Klepach, I. Carmichael and A. S. Serianni, J. Am. Chem. Soc.,
2005, 127, 9781–9793.
41 I. Carmichael and A. S. Serianni, Carbohydr. Res., 1996, 280, 177–186.
42 F. Cloran, I. Carmichael and A. S. Serianni, J. Am. Chem. Soc., 2000,
122, 396–397.
43 W. Koźmiński and D. Nanz, J. Magn. Reson., 1997, 124, 383–392.
44 W. Koźmiński and D. Nanz, J. Magn. Reson., 2000, 142, 294–299.
45 A. Meissner and O. W. Sørensen, Magn. Reson. Chem., 2001, 39,
49–52.
References
1 Essentials of Glycobiology ed. A. Varki, R. Cummings, J. Esko,
H. Freeze, G. Hart and J. Marth, Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, 1999.
2 B. Lindberg, in Polysaccharides ed. S. Dumitriu, Marcel Dekker,
New York, 1998, pp. 237–273.
3 N. I. A. Carlin and T. Wehler, Eur. J. Biochem., 1988, 176, 471–476.
4 J. Kulber-Kielb, E. Vinogradov, C. Chu and R. Schneerson, Carbohydr.
Res., 2007, 342, 643–647.
46 R. Laatikainen, M. Niemitz, U. Weber, J. Sundelin, T. Hassinen and
J. Vepsäläinen, J. Magn. Reson., Ser. A, 1996, 120, 1–10.
5 M. Ansaruzzaman, M. J. Albert, T. Holme, P.-E. Jansson, M. M. Rahman
and G. Widmalm, Eur. J. Biochem., 1996, 237, 786–791.
2462 | Org. Biomol. Chem., 2012, 10, 2453–2463
This journal is © The Royal Society of Chemistry 2012