through a one-pot three-component reaction for the first
time (Scheme 1c).
Scheme 1. Synthetic Methods of Benzoylacetonitrile
Because of its functional group tolerance and mild
conditions, we used an activated nitrile such as trimethyl-
silylacetonitrile as the nitrile source. To find the optimized
conditions, the coupling reaction of iodobenzene, tri-
methylsilylacetonitrile, and carbon monoxide was chosen
as a model.
Table 1 shows the yields under various conditions of the
desired carbonylated compound 2a and the noncarbony-
lated coupling product 3a.
Table 1. Optimization of the Bases and the Solvents for the
Carbonylationa
a variety of carbonylation methodologies have been
reported.12 The use of alcohols and amines as nucleophiles
has produced carboxylic acid derivatives.13 Carbonylative
cross-coupling reactions such as the Stille, Suzuki, Sonoga-
shira, and Heck carbonylations have produced a variety of
aryl ketones.14 Recently, the use of reductive carbonylation
to produce aromatic aldehydes under milder conditions
using CO/H2 (synthesis gas) has been reported.15 Similarly,
carbonylative CꢀH activation has been used to produce
aryl ketones.16 In addition, a variety of sp3 carbon nucleo-
philes have been used as coupling partners in the palladium-
catalyzed carbonylation.17 However, there have been no
reports on the use of aliphatic nitrile anions in the transition-
metal-catalyzed carbonylation of aryl halides including aryl
iodides, though they have been employed in direct coupling
reactions with aryl halides in the R-arylation of nitriles.18
Here, we report the use of palladium-catalyzed carbonyla-
tion for the synthesis of benzoylacetonitrile derivatives
yield (%)c
entry
Pd
Pd2(dba)3
ligand
additiveb 2a
3a
1
2c
3
4
5
6
7
8
9
Xantphosd
dppfe
ꢀ
0
0
0
0
0
Pd2(dba)3
Pd(OAc)2
Pd(PPh3)4
ꢀ
0
Xantphos
Xantphos
ꢀ
0
ꢀ
0
{(cinnamyl)PdCl}2 Xantphos
{(allyl)PdCl}2 Xantphos
ꢀ
9
13
ꢀ
21
43
trace
28
41
56
32
45
trace
{(2-Me-allyl)PdCl}2 Xantphos
{(2-Me-allyl)PdCl}2 dppf
{(2-Me-allyl)PdCl}2 tBu3P HBF4
ꢀ
trace
ꢀ
0
ꢀ
0
3
10 {(2-Me-allyl)PdCl}2
11 {(2-Me-allyl)PdCl}2
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
0
CuCl
CuBr
CuCl2
14
8
12 {(2-Me-allyl)PdCl}2
13 {(2-Me-allyl)PdCl}2
14 {(2-Me-allyl)PdCl}2
(12) (a) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011,
0
€
40, 4986. (b) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew. Chem.,
CuBr2 82
CuBr2
6
Int. Ed. 2009, 48, 4114. (c) Shibata, T. Adv. Synth. Catal. 2006, 348, 2328.
(d) Strubing, D.; Beller, M. Top. Organomet. Chem. 2006, 18, 165.
(e) Trzeciak, A. M.; Ziolkowski, J. J. Coord. Chem. Rev. 2005, 249, 2308.
15
ꢀ
0
0
a Reaction conditions: 1a (0.30 mmol), trimethylsilylacetonitrile
(0.36 mmol), Pd (0.024 mmol), ZnF2 (0.18 mmol), and CO (10 atm)
were reacted in DMF (N,N-dimethylformamide) at 80 °C for 12 h.
b 0.03 mmol was added. c Determined by gas chromatography with
internal standard. d 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene.
e 1,10-Bis(diphenylphosphino)ferroecene.
€
(13) (a) Hu, Y.; Liu, J.; Lu, Z.; Luo, X.; Zhang, H.; Lan, Y.; Lei, A.
J. Am. Chem. Soc. 2010, 132, 3153. (b) Brennfuhrer, A.; Neumann, H.;
Pews-Davtyan, A.; Beller, M. Eur. J. Org. Chem. 2009, 38. (c) Munday,
R. H.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130,
2754. (d) Jimenez-Rodriquez, C.; Eastham, G. R.; Cole-Hamilton, D. J.
Dalton Trans. 2005, 1826.
(14) (a) Park, A.; Park, K.; Kim, Y.; Lee, S. Org. Lett. 2011, 13, 944.
(b) Yang, Q.; Alper, H. J. Org. Chem. 2010, 75, 948. (c) Wu, X.-F.;
Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 5284. (d) Wu,
X.-F.; Neumann, H.; Spannenberg, A.; Schulz, T.; Jiao, H.; Beller, M.
J. Am. Chem. Soc. 2010, 132, 14596. (e) Lindh, J.; Fardost, A.; Almeida,
M.; Nilsson, P. Tetrahedron Lett. 2010, 51, 2470. (f) Neumann, H.;
Employing ZnF2 as an activator, the model reaction was
conducted in the presence of Pd2(dba)3 and Xantphos,
which had shown good activity in coupling reactions with
aryl halides and trimethylsilylacetonitrile in studies by the
Hartwig group.18g No product was formed in the presence
of carbon monoxide (entry 1), by using dppf as a ligand
(entry 2), or in the presence of Pd(OAc)2 and Pd(PPh3)4
(entries 3 and 4). In carbonylation, and when used as a Pd
source, {(cinnamyl)PdCl}2 showed limited activity, yield-
ing 9% of product 2a and 13% of product 3a (entry 5).
Both {(allyl)PdCl}2 and {(2-Me-allyl)PdCl}2 yielded only
a trace amount of product 3a but yielded, respectively,
21% and 43% of product 2a (entries 6 and 7). With {(2-
Me-allyl)PdCl}2 as a palladium source, both dppf and
€
Brennfuhrer, A.; Beller, M. Adv. Synth. Catal. 2008, 350, 2437.
(g) Zheng, S.; Xu, L.; Xia, C. Appl. Organomet. Chem. 2007, 21, 772.
(h) Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292.
(i) Ahmed, M. S. M.; Mori, A. Org. Lett. 2003, 5, 3057.
€
€
(15) Klaus, S.; Neumann, H.; Zapf, A.; Strubing, D.; Hubner, S.;
Almena, J.; Riermeier, T.; Gross, P.; Sarich, M.; Krahnert, W.-R.;
Rossen, K.; Beller, M. Angew. Chem., Int. Ed. 2006, 45, 154.
(16) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2010, 49, 7316.
(17) (a) Lee, P. H.; Lee, S. W.; Lee, K. Org. Lett. 2003, 5, 1103.
(b) Miura, K.; Tojino, M.; Fujisawa, N.; Hosomi, A.; Ryu, I. Angew.
Chem., Int. Ed. 2004, 43, 2423.
(18) (a) Stauffer, S. R.; Beare, N. A.; Stambuli, J. P.; Hartwig, J. F.
J. Am. Chem. Soc. 2001, 123, 4641. (b) Beare, N. A.; Hartwig, J. F.
J. Org. Chem. 2002, 67, 541. (c) Culkin, D. A.; Hartwig, J. F. J. Am.
Chem. Soc. 2002, 124, 9330. (d) Culkin, D. A.; Hartwig, J. F. Acc. Chem.
Res. 2003, 36, 234. (e) You, J.; Verkade, J. G. Angew. Chem., Int. Ed.
2003, 42, 5051. (f) You, J.; Verkade, J. G. J. Org. Chem. 2003, 68, 8003.
(g) Wu, L.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15824.
tBu3P HBF4 were used as a ligand; however, the yields
3
ofthe desired product were unsatisfactory(entries 8 and 9).
Org. Lett., Vol. 14, No. 4, 2012
1119