Organic Letters
Letter
K.; Yoshikawa, R.; Suzuki, Y.; Chaki, S.; Ito, H.; Taguchi, T.; Nakanishi,
S.; Okuyama, S. J. Med. Chem. 2000, 43, 4893.
allylic alcohols and ethers in high yields and diastereoselectivities.
The use of glyceraldehyde derived allyl ethers allows synthesis of
the corresponding fluorocyclopropanes in excellent yields and
enantioselectivities. The methodology could also be extended in
a one-pot fluorocyclopropanation protocol using in situ
generated enantioenriched allylic alkoxides to give access to
chiral, nonracemic fluorocyclopropanes.
(6) (a) Tamura, O.; Hashimoto, M.; Kobayashi, Y.; Katoh, T.;
Nakatani, K.; Kamada, M.; Hayakawa, I.; Akiba, T.; Terashima, S.
Tetrahedron 1994, 50, 3889. (b) Akiba, T.; Tamura, O.; Hashimoto, M.;
Kobayashi, Y.; Katoh, T.; Nakatani, K.; Kamada, M.; Hayakawa, I.;
Terashima, S. Tetrahedron 1994, 50, 3905.
(7) For reviews, see: (a) Charette, A. B.; Beauchemin, A. Org. React. (N.
Y.) 2001, 58, 1. (b) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A.
B. Chem. Rev. 2003, 103, 977. (c) Roy, M.-N.; Lindsay, V. N. G.;
Charette. A. B. In Stereoselective Synthesis: Reactions of Carbon-Carbon
Double Bonds (Science of Synthesis Series); de Vries, J. G., Vol. Ed.;
Thieme: Stuttgart, 2011; Vol. 1, Chapter 1.14, pp 731−817.
(8) For earlier work on the diastereoselective cyclopropanation of
acyclic allylic alcohols and ethers using zinc carbenoids, see: (a) Ratier,
M.; Castaing, M.; Godet, J. Y.; Pereyre, M. J. Chem. Res. (M) 1978, 2309.
(b) Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966. (c) Charette,
A. B.; Lacasse, M. C. Org. Lett. 2002, 4, 3351.
(9) (a) Fournier, J. F.; Mathieu, S.; Charette, A. B. J. Am. Chem. Soc.
2005, 127, 13140. (b) Charette, A. B.; Mathieu, S.; Fournier, J. F. Synlett
2005, 1779.
(10) (a) Kim, H. Y.; Lurain, A. E.; Garcia-Garcia, P.; Carroll, P. J.;
Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 13138. (b) Kim, H. Y.; Salvi, L.;
Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2009, 131, 954. (c) Infante,
R.; Nieto, J.; Andres, C. Org. Biomol. Chem. 2014, 12, 345.
(11) Beaulieu, L.-P. B.; Schneider, J. F.; Charette, A. B. J. Am. Chem.
Soc. 2013, 135, 7819.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, NMR spectra, and compound
characterization data (PDF)
Crystallographic data for 9 (CIF)
Crystallographic data for 18 (CIF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(12) In the dinitrobenzoate derivative of 3, as observed in the case of
the related iodocyclopropanes, the cis disposed cyclopropane ring
hydrogen atom relative to the fluoromethine hydrogen atom exhibits a
ACKNOWLEDGMENTS
■
3
This work was supported by the Natural Science and Engineering
Research Council of Canada (NSERC), the Canada Research
Chair Program, the Canada Foundation for Innovation, the
FRQNT Centre in Green Chemistry and Catalysis, and
higher JFCH‑Hcis proton coupling constant of 6.7 Hz, while the trans
disposed hydrogen atom exhibits a lower 3JFCH‑Hcis coupling constant of
2.4 Hz. Also, the fluorine atom displays a strong 3JF‑Hcis coupling constant
of 20.3 Hz and a smaller 3JF‑Htrans coupling constant of 6.9 Hz. These 1H
and 19F coupling constants have been used to assign the stereochemistry
of the fluorocyclopropane carbinols synthesized (see Supporting
Information). For use of coupling constants in assignment of
stereochemistry of halocyclopropanes, see: (a) Miyano, S.;
Hashimoto, H. Bull. Chem. Soc. Jpn. 1974, 47, 1500. (b) Miyano, S.;
Matsumoto, Y.; Hashimoto, H. J. Chem. Soc., Chem. Commun. 1975, 364.
(c) Seyferth, D.; Yamazaki, H.; Alleston, D. L. J. Org. Chem. 1963, 28,
703. (d) Miyano, S.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1973, 46, 892.
(e) Kim, H. Y.; Salvi, L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2009,
131, 954.
Universite
́ ́
de Montreal.
REFERENCES
■
(1) (a) Mueller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(2) (a) Vuligonda, V.; Lin, Y.; Chandraratna, R. A. S. Bioorg. Med.
Chem. Lett. 1996, 6, 213. (b) Martin, S. F.; Austin, R. E.; Oalmann, C. J.;
Baker, W. R.; Condon, S. L.; deLara, E.; Rosenberg, S. H.; Spina, K. P.;
Stein, H. H.; Cohen, J.; Kleinert, H. D. J. Med. Chem. 1992, 35, 1710.
(c) Martin, S. F.; Oalmann, C. J.; Liras, S. Tetrahedron 1993, 49, 3521.
(d) Reichelt, A.; Martin, S. F. Acc. Chem. Res. 2006, 39, 433. (e) Wipf, P.;
Xiao, J. Org. Lett. 2005, 7, 103. (f) Ivashkin, P.; Lemonnier, G.; Tora, A.
S.; Pin, J. P.; Goudet, C.; Jubault, P.; Pannecoucke, X. Bioorg. Med. Chem.
Lett. 2015, 25, 2523. (g) Lemonnier, G.; Lion, C.; Quirion, J.-C.; Pin, J.-
P.; Goudet, C.; Jubault, P. Bioorg. Med. Chem. 2012, 20, 4716.
(3) For reviews, see: (a) David, E.; Milanole, G.; Ivashkin, P.; Couve-
Bonnaire, S.; Jubault, P.; Pannecoucke, X. Chem. - Eur. J. 2012, 18,
14904. (b) Dolbier, W. R., Jr.; Battiste, M. A. Chem. Rev. 2003, 103,
1071. (c) Akiba, T.; Tamura, O.; Hashimoto, M.; Kobayashi, Y.; Katoh,
T.; Nakatani, K.; Kamada, M.; Hayakawa, I.; Terashima, S. Tetrahedron
1994, 50, 3905.
(13) (a) Marek, I.; Beruben, D.; Normant, J.-F. Tetrahedron Lett. 1995,
36, 3695. (b) Beruben, D.; Marek, I.; Normant, J. F.; Platzer, N. J. Org.
Chem. 1995, 60, 2488. (c) Wooten, A.; Carroll, P. J.; Maestri, A. G.;
Walsh, P. J. J. Am. Chem. Soc. 2006, 128, 4624. (d) Guerrero, A.; Martin,
E.; Hughes, D. L.; Kaltsoyannis, N.; Bochmann, M. Organometallics
2006, 25, 3311. (e) Walker, D. A.; Woodman, T. J.; Hughes, D. L.;
Bochmann, M. Organometallics 2001, 20, 3772. (f) Bukhaltsev, E.;
Goldberg, I.; Cohen, R.; Vigalok, A. Organometallics 2007, 26, 4015.
3
(14) The all cis fluorocyclopropyl dioxolane 9 displays a JFCH‑Hcis
coupling constant of 6 Hz for the cis disposed cyclopropane ring
protons. The trans disposed fluorine atom displays a 3JF‑Htrans coupling
constant of 7.4 Hz (see Supporting Information).
(4) (a) Shen, X.; Zhang, W.; Zhang, L.; Luo, T.; Wan, X.; Gu, Y.; Hu, J.
Angew. Chem., Int. Ed. 2012, 51, 6966. (b) Milanole, G.; Couve-
Bonnaire, S.; Bonfanti, J. F.; Jubault, P.; Pannecoucke, X. J. Org. Chem.
2013, 78, 212. (c) Ferrary, T.; David, E.; Milanole, G.; Besset, T.;
Jubault, P.; Pannecoucke, X. Org. Lett. 2013, 15, 5598. (d) Saito, A.; Ito,
H.; Taguchi, T. Tetrahedron 2001, 57, 7487. (e) Zhang, F.; Song, Z. J.;
Tschaen, D.; Volante, R. P. Org. Lett. 2004, 6, 3775. (f) Ivashkin, P.;
Couve-Bonnaire, S.; Jubault, P.; Pannecoucke, X. Org. Lett. 2012, 14,
5130.
(15) Nugent, W. A. Chem. Commun. 1999, 1369.
(16) Co
̂
te,
́
A.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 2771.
(5) (a) Pons, A.; Beucher, H.; Ivashkin, P.; Lemonnier, G.; Poisson, T.;
Charette, A. B.; Jubault, P.; Pannecoucke, X. Org. Lett. 2015, 17, 1790.
(b) Morikawa, T.; Sasaki, H.; Mori, K.; Shiro, M.; Taguchi, T. Chem.
Pharm. Bull. 1992, 40, 3189. (c) Meyer, O. G. J.; Frohlich, R.; Haufe, G.
Synthesis 2000, 2000, 1479. (d) Nakazato, A.; Kumagai, T.; Sakagami,
D
Org. Lett. XXXX, XXX, XXX−XXX