Page 9 of 10
Organic Process Research & Development
1
2
3
4
5
All work described in this paper was funded by Novartis, Inc. We thank Dr Huangchao Yu for review of the
manuscript.
6
7
Supporting Information
8
9
The Supporting Information is available free of charge on the ACS Publications website at DOI:
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Detailed experimental procedure, analytical data of the product and copies of NMR spectrum.
REFERENCES
1 For selected reviews on amide bond formation reactions, see: (a) Chanda, A.; Fokin, V. V. Organic
Synthesis “On Water”. Chem. Rev., 2009, 109 (2), 725-748; (b) Roughley, S. D.; Jordan, A. M. The
Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. J. Med.
Chem., 2011, 54 (10), 3451–3479; (c) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Large-Scale
Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev.,
2016, 20 (2), 140–177; (d) El-Faham, A.; Albericio, F. Peptide Coupling Reagents, More than a Letter Soup.
Chem. Rev., 2011, 111 (11), 6557–6602; (e) Valeur, E.; Bradley, M. Amide bond formation: beyond the
myth of coupling reagents. Chem. Soc. Rev., 2009, 38 (2), 606–631.
2
3 (a) Tabolin, A. A.; Ioffe, S. L. Rearrangement of N-Oxyenamines and Related Reactions. Chem. Rev.,
2014, 114 (10), 5426–5476; (b) Rokade, B. V.; Prabhu, J. R. Chemoselective Schmidt Reaction Mediated
by Triflic Acid: Selective Synthesis of Nitriles from Aldehydes. J. Org.Chem., 2012, 77 (12), 5364–5370; (c)
Huh, C. W.; Somal, G. K.; Katz, C. E.; Pei, H. X.; Zeng, Y. B.; Douglas, J. T.; Aube, J. One-Pot Synthesis
of Lactams Using Domino Reactions: Combination of Schmidt Reaction with Sakurai and Aldol Reactions.
J. Org. Chem., 2009, 74 (20), 7618–7626; (d) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Analysis
of the Reactions Used for the Preparation of Drug Candidate Molecules. Org. Biomol. Chem., 2006, 4 (12),
2337–2347; (e) Pattabiraman, V. R.; Bode, J. W. Rethinking amide bond synthesis. Nature, 2011, 480
(7378), 471–479; (f) Huy, P. H.; Mbouhom, C. Formamide Catalyzed Activation of Carboxylic Acids –
Versatile and Cost-efficient Amidation and Esterification. Chem. Sci., 2019, 10 (31), 7399–7406.
4 (a) Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F.; Sheppard, T. D. A green chemistry perspective on
catalytic amide bond formation. Nat Catal., 2019, 2 (1), 10–17. (b) MacMillan, D. S.; Murray, J.; Sneddon,
H. F.; Jamiesona, C.; Watson, A. J. B. Evaluation of Alternative Solvents in Common Amide Coupling
Reactions: Replacement of Dichloromethane and N,N-dimethylformamide. Green Chem., 2013, 15 (3),
596–600.
5 a) Bergkamp, L.; Herbatschek, N. Rev. Eur. Comp. Int. Env. Law 2014, 23, 221−245. b) See for example
6 Bousfield, T. W.; Pearce, K. P. R.; Nyamini, S. B.; Angelis-Dimakis, A.; Camp, J. E. Synthesis of amides
from acid chlorides and amines in the bio-based solvent Cyrene.™ Green Chem., 2019, 21 (13), 3675–
3681.
7 White, T. D.; Berglund, K. D.; Groh, J. M.; Johnson, M. D.; Miller, R. D.; Yate, M. H. Development of a
Continuous Schotten–Baumann Route to an Acyl Sulfonamide. Org. Process Res. Dev., 2012, 16 (5),
939−957.
8 (a) Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C. R.; Abou-Shehadad, S.; Dunne, P. J. CHEM21
selection guide of classical- and less classical-solvents. Green Chem., 2016, 18 (1), 288–296; (b)
Salimiyan, K.; Saberi, D. Choline Chloride/Urea as an Eco‐Friendly Deep Eutectic Solvent for TCT‐
Mediated Amide Coupling at Room Temperature. ChemistrySelect 2019, 4 (14), 3985−3989;
9 (a) Sorella, G. L.; Strukul, G.; Scarso, A. Recent Advances in Catalysis in Micellar Media. Green Chem.,
2015, 17 (2), 644; (b) Li, Y.; Hong, X. M.; Collard, D. M.; El-Sayed, M. A. Suzuki Cross-Coupling Reactions
ACS Paragon Plus Environment