Journal of the American Chemical Society
Article
́
(3) Suarez, S. A.; Neuman, N. I.; Mun
̃
oz, M.; Alvarez, L.; Bikiel, D.
́
Nitrosyl hydride (HNO) as an O2 analogue: long-lived HNO adducts
of ferrous globins. Biochemistry 2009, 48, 5018−5025.
́
E.; Brondino, C. D.; Ivanovic-Burmazovic, I.; Miljkovic, J.; Filipovic,
M. R.; Martı, M. A.; Doctorovich, F. Nitric oxide is reduced to HNO
́
(22) Montenegro, A. C.; Amorebieta, V. T.; Slep, L. D.; Martin, D.
F.; Roncaroli, F.; Murgida, D. H.; Bari, S. E.; Olabe, J. A. Three redox
states of nitrosyl: NO+, NO·, and NO−/HNO interconvert reversibly
on the same pentacyanoferrate(II) platform. Angew. Chem., Int. Ed.
2009, 48, 4213−4216.
by proton-coupled nucleophilic attack by ascorbate, tyrosine, and
other alcohols. A new route to HNO in biological media? J. Am.
Chem. Soc. 2015, 137, 4720−4727.
(4) Hamer, M.; Suarez, S. A.; Neuman, N. I.; Alvarez, L.; Munoz,
M.; Marti, M. A.; Doctorovich, F. Discussing endogenous NO·/HNO
interconversion aided by phenolic drugs and vitamins. Inorg. Chem.
2015, 54, 9342−9350.
(23) Montenegro, A. C.; Bari, S. E.; Olabe, J. A. Reactivity of
iron(II)-bound nitrosyl hydride (HNO, nitroxyl) in aqueous solution.
J. Inorg. Biochem. 2013, 118, 108−114.
(5) Irvine, J. C.; Ritchie, R. H.; Favaloro, J. L.; Andrews, K. L.;
Widdop, R. E.; Kemp-Harper, B. K. Nitroxyl (HNO): the Cinderella
of the nitric oxide story. Trends Pharmacol. Sci. 2008, 29, 601−608.
(6) Paolocci, N.; Jackson, M. I.; Lopez, B. E.; Miranda, K.;
Tocchetti, C. G.; Wink, D. A.; Hobbs, A. J.; Fukuto, J. M. The
pharmacology of nitroxyl (HNO) and its therapeutic potential: not
just the Janus face of NO. Pharmacol. Ther. 2007, 113, 442−458.
(7) Tocchetti, C. G.; Wang, W.; Froehlich, J. P.; Huke, S.; Aon, M.
A.; Wilson, G. M.; Di Benedetto, G.; O’Rourke, B.; Gao, W. D.; Wink,
D. A.; Toscano, J. P.; Zaccolo, M.; Bers, D. M.; Valdivia, H. H.;
Cheng, H.; Kass, D. A.; Paolocci, N. Nitroxyl improves cellular heart
function by directly enhancing cardiac sarcoplasmic reticulum Ca2+
cycling. Circ. Res. 2007, 100, 96−104.
(8) Nagasawa, H. T.; DeMaster, E. G.; Redfern, B.; Shirota, F. N.;
Goon, D. J. W. Evidence for nitroxyl in the catalase-mediated
bioactivation of the alcohol deterrent agent cyanamide. J. Med. Chem.
1990, 33, 3120−3122.
(9) DeMaster, E. G.; Redfern, B.; Nagasawa, H. T. Mechanisms of
inhibition of aldehyde dehydrogenase by nitroxyl, the active
metabolite of the alcohol deterrent agent cyanamide. Biochem.
Pharmacol. 1998, 55, 2007−2015.
(10) Shoeman, D. W.; Shirota, F. N.; DeMaster, E. G.; Nagasawa, H.
T. Reaction of nitroxyl, an aldehyde dehydrogenase inhibitor, with N-
acetyl-L-cysteine. Alcohol 2000, 20, 55−59.
(11) Miller, T. W.; Cherney, M. M.; Lee, A. J.; Francoleon, N. E.;
Farmer, P. J.; King, S. B.; Hobbs, A. J.; Miranda, K. M.; Burstyn, J. N.;
Fukuto, J. M. The effects of nitroxyl (HNO) on soluble guanylate
cyclase activity: interactions at ferrous heme and cysteine thiols. J.
Biol. Chem. 2009, 284, 21788−21796.
(12) Bianco, C. L.; Toscano, J. P.; Bartberger, M. D.; Fukuto, J. M.
The chemical biology of HNO signaling. Arch. Biochem. Biophys.
2017, 617, 129−136.
(13) Einsle, O.; Messerschmidt, A.; Huber, R.; Kroneck, P. M. H.;
Neese, F. Mechanism of the six-electron reduction of nitrite to
ammonia by cytochrome c nitrite reductase. J. Am. Chem. Soc. 2002,
124, 11737−11745.
(24) Walter, M. R.; Dzul, S. P.; Rodrigues, A. V.; Stemmler, T. L.;
Telser, J.; Conradie, J.; Ghosh, A.; Harrop, T. C. Synthesis of CoII-
NO− Complexes and Their Reactivity as a Source of Nitroxyl. J. Am.
Chem. Soc. 2016, 138, 12459−12471.
(25) Goodrich, L. E.; Roy, S.; Alp, E. E.; Zhao, J.; Hu, M. Y.;
Lehnert, N. Electronic structure and biologically relevant reactivity of
low-spin {FeNO}8 porphyrin model complexes: new insight from a
bis-picket fence porphyrin. Inorg. Chem. 2013, 52, 7766−7780.
(26) Abucayon, E. G.; Khade, R. L.; Powell, D. R.; Zhang, Y.;
Richter-Addo, G. B. Hydride Attack on a Coordinated Ferric Nitrosyl:
Experimental and DFT Evidence for the Formation of a Heme
Model-HNO Derivative. J. Am. Chem. Soc. 2016, 138, 104−107.
(27) Kumar, M. R.; Zapata, A.; Ramirez, A. J.; Bowen, S. K.;
Francisco, W. A.; Farmer, P. J. Nitrosyl hydride (HNO) replaces
dioxygen in nitroxygenase activity of manganese quercetin dioxyge-
nase. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 18926−18931.
(28) Han, X.; Kumar, M. R.; Farmer, P. J. Nitroxygenation of
quercetin by HNO. Tetrahedron Lett. 2016, 57, 399−402.
̈
(29) Confer, A. M.; McQuilken, A. C.; Matsumura, H.; Moenne-
Loccoz, P.; Goldberg, D. P. A Nonheme, High-Spin {FeNO}8
Complex that Spontaneously Generates N2O. J. Am. Chem. Soc.
2017, 139, 10621−10624.
(30) Patra, A. K.; Dube, K. S.; Sanders, B. C.; Papaefthymiou, G. C.;
Conradie, J.; Ghosh, A.; Harrop, T. C. A thermally stable {FeNO}8
complex: properties and biological reactivity of reduced MNO
systems. Chem. Sci. 2012, 3, 364−369.
(31) Sanders, B. C.; Patra, A. K.; Harrop, T. C. Synthesis, properties,
and reactivity of a series of non-heme {FeNO}7/8 complexes:
implications for Fe-nitroxyl coordination. J. Inorg. Biochem. 2013,
118, 115−127.
(32) Rhine, M. A.; Rodrigues, A. V.; Bieber Urbauer, R. J.; Urbauer,
J. L.; Stemmler, T. L.; Harrop, T. C. Proton-induced reactivity of
NO− from a {CoNO}8 complex. J. Am. Chem. Soc. 2014, 136, 12560−
12563.
(33) Rhine, M. A.; Sanders, B. C.; Patra, A. K.; Harrop, T. C.
Overview and new insights into the thiol reactivity of coordinated NO
in {MNO}6/7/8 (M = Fe, Co) complexes. Inorg. Chem. 2015, 54,
9351−9366.
(14) Guo, Y.; Stroka, J. R.; Kandemir, B.; Dickerson, C. E.; Bren, K.
L. A Cobalt Metallopeptide Electrocatalyst for the Selective
Reduction of Nitrite to Ammonium. J. Am. Chem. Soc. 2018, 140,
16888−16892.
(34) Speelman, A. L.; White, C. J.; Zhang, B.; Alp, E. E.; Zhao, J.;
Hu, M.; Krebs, C.; Penner-Hahn, J.; Lehnert, N. Non-heme High-
Spin {FeNO}6−8 Complexes: One Ligand Platform Can Do It All. J.
Am. Chem. Soc. 2018, 140, 11341−11359.
(15) Anderson, J. H. The metabolism of hydroxylamine to nitrite by
Nitrosomonas. Biochem. J. 1964, 91, 8−17.
(16) Lin, R.; Farmer, P. J. The HNO adduct of myoglobin: Synthesis
and characterization. J. Am. Chem. Soc. 2000, 122, 2393−2394.
(35) Kupper, C.; Schober, A.; Demeshko, S.; Bergner, M.; Meyer, F.
An exclusively organometallic {FeNO}7 complex with tetracarbene
ligation and a linear FeNO unit. Inorg. Chem. 2015, 54, 3096−3098.
(36) Pellegrino, J.; Bari, S. E.; Bikiel, D. E.; Doctorovich, F.
Successful stabilization of the elusive species {FeNO}8 in a heme
model. J. Am. Chem. Soc. 2010, 132, 989−995.
1
(17) Sulc, F.; Fleischer, E.; Farmer, P. J.; Ma, D.; La Mar, G. N. H
NMR structure of the heme pocket of HNO-myoglobin. J. Biol. Inorg.
Chem. 2003, 8, 348−352.
(18) Sulc, F.; Immoos, C. E.; Pervitsky, D.; Farmer, P. J. Efficient
trapping of HNO by deoxymyoglobin. J. Am. Chem. Soc. 2004, 126,
1096−1101.
(19) Immoos, C. E.; Sulc, F.; Farmer, P. J.; Czarnecki, K.; Bocian, D.
F.; Levina, A.; Aitken, J. B.; Armstrong, R. S.; Lay, P. A. Bonding in
HNO-myoglobin as characterized by X-ray absorption and resonance
raman spectroscopies. J. Am. Chem. Soc. 2005, 127, 814−815.
(20) Pervitsky, D.; Immoos, C.; van der Veer, W.; Farmer, P. J.
Photolysis of the HNO adduct of myoglobin: transient generation of
the aminoxyl radical. J. Am. Chem. Soc. 2007, 129, 9590−9591.
(21) Kumar, M. R.; Pervitsky, D.; Chen, L.; Poulos, T.; Kundu, S.;
́
(37) Garcıa-Serres, R.; Grapperhaus, C. A.; Bothe, E.; Bill, E.;
Weyhermuller, T.; Neese, F.; Wieghardt, K. Structural, spectroscopic,
̈
and computational study of an octahedral, non-heme {Fe-NO}6−8
Series: [Fe(NO)(cyclam-ac)]2+/+/0. J. Am. Chem. Soc. 2004, 126,
5138−5153.
(38) Li, F.; Meyer, R. L.; Carpenter, S. H.; VanGelder, L. E.;
Nichols, A. W.; Machan, C. W.; Neidig, M. L.; Matson, E. M. Nitric
oxide activation facilitated by cooperative multimetallic electron
transfer within an iron-functionalized polyoxovanadate-alkoxide
cluster. Chem. Sci. 2018, 9, 6379−6389.
́
Hargrove, M. S.; Rivera, E. J.; Diaz, A.; Colon, J. L.; Farmer, P. J.
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX