Chemistry of Materials
Article
Nanocrystals: From Unexpected Solution Properties to Outstanding
Processability. Nano Lett. 2016, 16, 2133−2138.
(42) Okada, Y.; Ishikawa, K.; Maeta, N.; Kamiya, H. Understanding
the Colloidal Stability of Nanoparticle−Ligand Complexes: Design,
Synthesis, and Structure−Function Relationship Studies of Amphi-
philic Small-Molecule Ligands. Chem. - Eur. J. 2018, 24, 1853−1858.
(43) Bhattacharya, A. K.; Thyagarajan, G. Michaelis−Arbuzov
rearrangement. Chem. Rev. 1981, 81, 415−430.
(24) De Roo, J.; Van den Broeck, F.; De Keukeleere, K.; Martins, J.
C.; Van Driessche, I.; Hens, Z. Unravelling the Surface Chemistry of
Metal Oxide Nanocrystals, the Role of Acids and Bases. J. Am. Chem.
Soc. 2014, 136, 9650−9657.
(44) Kedrowski, S. M. A.; Dougherty, D. A. Room-Temperature
Alternative to the Arbuzov Reaction: The Reductive Deoxygenation
of Acyl Phosphonates. Org. Lett. 2010, 12, 3990−3993.
(25) Pujari, S. P.; Scheres, L.; Marcelis, A. T. M.; Zuilhof, H.
Covalent Surface Modification of Oxide Surfaces. Angew. Chem., Int.
Ed. 2014, 53, 6322−6356.
(45) Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.;
Mohanakrishnan, A. K. Lewis Acid-Mediated Michaelis−Arbuzov
Reaction at Room Temperature: A Facile Preparation of Arylmethyl/
Heteroarylmethyl Phosphonates. Org. Lett. 2011, 13, 1270−1273.
(46) Cohen, R. J.; Fox, D. L.; Eubank, J. F.; Salvatore, R. N. Mild
and efficient Cs2CO3-promoted synthesis of phosphonates. Tetrahe-
dron Lett. 2003, 44, 8617−8621.
(26) De Nolf, K.; Cosseddu, S. M.; Jasieniak, J. J.; Drijvers, E.;
Martins, J. C.; Infante, I.; Hens, Z. Binding and Packing in Two-
Component Colloidal Quantum Dot Ligand Shells: Linear versus
Branched Carboxylates. J. Am. Chem. Soc. 2017, 139, 3456−3464.
(27) Gomes, R.; Hassinen, A.; Szczygiel, A.; Zhao, Q. A.;
Vantomme, A.; Martins, J. C.; Hens, Z. Binding of Phosphonic
Acids to CdSe Quantum Dots: A Solution NMR Study. J. Phys. Chem.
Lett. 2011, 2, 145−152.
́
(47) Andre, V.; Lahrache, H.; Robin, S.; Rousseau, G. Reaction of
unsaturated phosphonate monoesters with bromo- and iodo(bis-
collidine) hexafluorophosphates. Tetrahedron 2007, 63, 10059−
10066.
(28) Knauf, R. R.; Lennox, J. C.; Dempsey, J. L. Quantifying Ligand
Exchange Reactions at CdSe Nanocrystal Surfaces. Chem. Mater.
2016, 28, 4762−4770.
(48) Kosolapoff, G. M. Isomerization of Alkylphosphites. III. The
Synthesis of n-Alkylphosphonic Acids. J. Am. Chem. Soc. 1945, 67,
1180−1182.
(29) Woo, J. Y.; Lee, S.; Kim, W. D.; Lee, K.; Kim, K.; An, H. J.; Lee,
D. C.; Jeong, S. Air-Stable PbSe Nanocrystals Passivated by
Phosphonic Acids. J. Am. Chem. Soc. 2016, 138, 876−883.
(30) De Keukeleere, K.; Coucke, S.; De Canck, E.; Van Der Voort,
P.; Delpech, F.; Coppel, Y.; Hens, Z.; Van Driessche, I.; Owen, J. S.;
De Roo, J. Stabilization of Colloidal Ti, Zr, and Hf Oxide
Nanocrystals by Protonated Tri-n-octylphosphine Oxide (TOPO)
and Its Decomposition Products. Chem. Mater. 2017, 29, 10233−
10242.
(49) Huang, T.; Chen, T.; Han, L.-B. Oxidative Dephosphorylation
of Benzylic Phosphonates with Dioxygen Generating Symmetrical
trans-Stilbenes. J. Org. Chem. 2018, 83, 2959−2965.
(50) Appel, R. Tertiary Phosphane/Tetrachloromethane, a Versatile
Reagent for Chlorination, Dehydration, and P-N Linkage. Angew.
Chem., Int. Ed. Engl. 1975, 14, 801−811.
(51) Crawforth, M.; Fawcett, J.; Rawlings, J. B. Asymmetric synthesis
of A-factor. J. Chem. Soc., Perkin Trans. 1 1998, 1721−1726.
(52) McKenna, C. E.; Higa, M. T.; Cheung, N. H.; McKenna, M.-C.
The facile dealkylation of phosphonic acid dialkyl esters by
bromotrimethylsilane. Tetrahedron Lett. 1977, 18, 155−158.
(53) Chen, O.; Chen, X.; Yang, Y.; Lynch, J.; Wu, H.; Zhuang, J.;
Cao, Y. C. Synthesis of Metal−Selenide Nanocrystals Using Selenium
Dioxide as the Selenium Precursor. Angew. Chem., Int. Ed. 2008, 47,
8638−8641.
́
(31) Queffelec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B.
Surface Modification Using Phosphonic Acids and Esters. Chem. Rev.
2012, 112, 3777−3807.
́
(32) Drijvers, E.; De Roo, J.; Geiregat, P.; Feher, K.; Hens, Z.;
Aubert, T. Revisited Wurtzite CdSe Synthesis: A Gateway for the
Versatile Flash Synthesis of Multishell Quantum Dots and Rods.
Chem. Mater. 2016, 28, 7311−7323.
(33) Carbone, L.; Nobile, C.; De Giorgi, M.; Sala, F. D.; Morello, G.;
Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan,
M.; Silvestre, A. F.; Chiodo, L.; Kudera, S.; Cingolani, R.; Krahne, R.;
Manna, L. Synthesis and Micrometer-Scale Assembly of Colloidal
CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano
Lett. 2007, 7, 2942−2950.
(54) De Roo, J.; Coucke, S.; Rijckaert, H.; De Keukeleere, K.;
Sinnaeve, D.; Hens, Z.; Martins, J. C.; Van Driessche, I. Amino Acid-
Based Stabilization of Oxide Nanocrystals in Polar Media: From
Insight in Ligand Exchange to Solution 1H NMR Probing of Short-
Chained Adsorbates. Langmuir 2016, 32, 1962−1970.
(55) Lauria, A.; Villa, I.; Fasoli, M.; Niederberger, M.; Vedda, A.
Multifunctional Role of Rare Earth Doping in Optical Materials:
Nonaqueous Sol−Gel Synthesis of Stabilized Cubic HfO2 Lumines-
cent Nanoparticles. ACS Nano 2013, 7, 7041−7052.
(56) Robertson, J. High dielectric constant oxides. Eur. Phys. J.: Appl.
Phys. 2004, 28, 265−291.
(57) Kumar, S.; Wang, Z.; Huang, X.; Kumari, N.; Davila, N.;
Strachan, J. P.; Vine, D.; Kilcoyne, A. L.; Nishi, Y.; Williams, R. S.
Conduction Channel Formation and Dissolution Due to Oxygen
Thermophoresis/Diffusion in Hafnium Oxide Memristors. ACS Nano
2016, 10, 11205−11210.
(34) Owen, J. S.; Park, J.; Trudeau, P. E.; Alivisatos, A. P. Reaction
chemistry and ligand exchange at cadmium-selenide nanocrystal
surfaces. J. Am. Chem. Soc. 2008, 130, 12279−12280.
(35) Green, M. The nature of quantum dot capping ligands. J. Mater.
Chem. 2010, 20, 5797−5809.
(36) Jiang, Z.-J.; Leppert, V.; Kelley, D. F. Static and Dynamic
Emission Quenching in Core/Shell Nanorod Quantum Dots with
Hole Acceptors. J. Phys. Chem. C 2009, 113, 19161−19171.
(37) Rechberger, F.; Heiligtag, F. J.; Suess, M. J.; Niederberger, M.
̈
Assembly of BaTiO3 Nanocrystals into Macroscopic Aerogel
Monoliths with High Surface Area. Angew. Chem., Int. Ed. 2014, 53,
6823−6826.
(38) Wei, H.; Insin, N.; Lee, J.; Han, H.-S.; Cordero, J. M.; Liu, W.;
Bawendi, M. G. Compact Zwitterion-Coated Iron Oxide Nano-
particles for Biological Applications. Nano Lett. 2012, 12, 22−25.
(39) Etschel, S. H.; Tykwinski, R. R.; Halik, M. Enhancing the
Dispersibility of TiO2 Nanorods and Gaining Control over Region-
Selective Layer Formation. Langmuir 2016, 32, 10604−10609.
(40) De Roo, J.; Yazdani, N.; Drijvers, E.; Lauria, A.; Maes, J.; Owen,
J. S.; Van Driessche, I.; Niederberger, M.; Wood, V.; Martins, J. C.;
Infante, I.; Hens, Z. Probing Solvent−Ligand Interactions in Colloidal
Nanocrystals by the NMR Line Broadening. Chem. Mater. 2018, 30,
5485−5492.
(41) Michaelis, A.; Kaehne, R. Ueber das Verhalten der Jodalkyle
̈
gegen die sogen. Phosphorigsaureester oder O-Phosphine. Ber. Dtsch.
Chem. Ges. 1898, 31, 1048−1055.
F
Chem. Mater. XXXX, XXX, XXX−XXX