4
Tetrahedron
I
S
19
95
efforts to probe the mechanism using EPR studies are still going
SH
SH
3o
on in our laboratory.
I
I
S
20
21
91
H3C
H3C
O2N
3p
Conclusion
S
86
In summary, we have developed a versatile, simple and
economical C-S cross-coupling reaction which can be applied for
the coupling of aryl or heteroaryl iodides with alkyl and aryl
thiols. The CuI/DABCO catalytic system is very cheap, readily
available and shows excellent chemoselectivity. These features
are highly useful when considering the scaling up of the reaction.
Further efforts to elucidate the mechanism and expand the scope
of the reaction are currently underway.
SH
O2N
3q
[a]: Reaction conditions: ArX (0.6 mmol), thiol (0.5 mmol), CuI (5
mol%), ligand (10 mol%), base (2 equiv), 120 C, N2, [b]: isolated
yield, [c]: 1.6 equiv. of thoiophenol is used and reaction carried out
for 24h. [d]: Reaction was carried out for 17 h.
o
Acknowledgements
Mechanistic Rationale
GA thanks the Kerala State Council for Science, Technology
and Environment (KSCSTE), Trivandrum (Order no.
341/2013/KSCSTE dated 15.03.2013) for financial support.
AMT and SA thank the Council of Scientific and Industrial
Research (CSIR, India) for Junior research fellowships. SKS
thanks the University Grants Commission (UGC, India) for a
junior research fellowship. We thank the Institute for Intensive
Research in Basic Sciences (IIRBS) of Mahatma Gandhi
University for NMR facility.
On the basis of the above observations we propose a possible
reaction pathway for the copper (I) catalyzed C-S cross-coupling
reaction of aryl halides with thiols (Scheme 2).
Scheme 2
Plausible reaction mechanism
CuI
C u I
DABCO
D A B C O
I
A rS -R
References and notes
N
N
ArX
A rX
(I)
Cu
ArS-R
(D A B C O )2 C u (I)
1. (a) Rayner, C. M. Contemporary Organic Synthesis, 1996, 3,
499-599; (b) Baird, C. P.; Rayner, C. M. J. Chem. Soc., Perkin
Trans.1. 1998, 1973-2003; (c) Procter, D. J. J. Chem. Soc.,
Perkin Trans.1. 1999, 641-668; (d) Frost, D. J.; Mendonca, P.
J. Chem. Soc., Perkin Trans.1. 1998, 2615-2623; (e) Hassan,
J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.; Chem.
Rev. 2002, 102, 1359-1469; (f) Beletskaya, I. P.; Cheprakov,
A. V. Coord. Chem. Rev. 2004, 248, 2337-2364; (g) Corbet,
J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651-2710.
I
N
N
I
Oxidative
Reductive
O xid a tive
R e d u c tiv e
addition
elimination
a d d itio n
e lim in a tio n
(III)
Ar
A r
X
(III)
A r
N
N
(D A B C O )
Ar
(III)
2
(III)
C u
(D A B C O )2
C u
Cu
Cu
III
III
2. (a) Corey, E. J.; Shulman, J. I.; J. Org. Chem. 1970, 35, 777-
780; (b) Cohen, T.; Herman, G.; Falck, J. R.; Mura, A. J. J.
Org. Chem. 1975, 40, 812-813; (c) Hopkins, P. B.; Fuchs, P.
L. J. Org. Chem. 1978, 43, 1208-1217; (d) Posner, G. H.;
Tang, P. W. J. Org. Chem. 1978, 43, 4131-4136; (e)
Mukaiyama, T.; Kumamato, T.; Fukuyama, S.; Taguchi, T.
Bull. Chem. Soc. Jpn. 1970, 43, 2870-2873; (f) Mukaiyama,
T.; Shiono, M.; Sato, T. Chem. Lett. 1974, 3, 37-38; (g)
Akiyama, F. Bull. Chem. Soc. Jpn. 1977, 50, 936-938.
II
S R
SR
N
N
X
II
R-SH + +K2CO3
R -S H
K 2 C O 3
K H C O + K X
KHCO +KX
3
3
3. Kosug, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 7, 13-
14.
4. For a review see: Lee, C.-F.; Liu, Y.-C.; Badsara, S. S. Chem.
Asian J. 2014, 9, 706-722.
5. For examples of Pd-catalyzed C-S coupling reactions see: (a)
Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.;
Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205-9219; (b)
Baranano, D.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117,
2937-2938; (c) Zheng, N.; McWilliams, J. C.; Fleitz, F. J.;
Armstrong, J. D.; Volante, R. P. J. Org. Chem. 1998, 63,
9606-9607; (d) Murata, M.; Buchwald, S. L. Tetrahedron
2004, 60, 7397-7403; (e) Fernández-Rodríguez, M. A.; Shen,
Q. Hartwig, J. F. Chem. Eur. J. 2006, 12, 7782-7796; (f)
Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am.
Chem. Soc. 2006, 128, 2180-2181; (g) Lee, J.-Y.; Lee, P. H.
J. Org. Chem. 2008, 73, 7413-7416; (h) Migita, T.; Shimizu,
T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Chem.
Soc. Jpn. 1980, 53, 1385-1389.
Even though DABCO is a bidentate ligand, the two N atoms
cannot coordinate with the same Cu atom since they are 1800
apart from each other. Thus DABCO-Cu complex may exist as
an oligomer or as a dimer, where two Cu atoms are linked
through a DABCO molecule as a bridge.17 It is presumed that in
the first step, CuI gets coordinated with the ligand DABCO and
forms a dimeric Cu (I) complex I which is consistent with the
Cu:ligand ratio in the reaction (table 2). This complex formation
may increase the solubility of the Cu salt in organic solvents. In
the next step, oxidative addition of aryl halide can occur and
furnishes a Cu (III) complex II. The thiolate anion generated in
the presence of base can then get exchanged with the halogen and
forms the complex III which can then undergo reductive
elimination to give the required product. The regenerated Cu(I)-
catalyst can then enter into the next catalytic cycle. Further
6. Cu-catalyzed C-S coupling reactions: For a review see (a)
Sujatha, A.; Thomas, A.M.; Thankachan, A. P.; Anilkumar,
G. ARKIVOC, 2015, 1-28; For selected examples see: (b)
Kamal, A.; Srinivasulu, V.; Murty, J. N. S. R. C.;
Shankaraiah, N.; Nagesh, N.; Reddy, T. S.; Subba Rao, A. V.